These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 11690482)

  • 1. Low-frequency vibrational properties of nanocrystalline materials.
    Derlet PM; Meyer R; Lewis LJ; Stuhr U; Van Swygenhoven H
    Phys Rev Lett; 2001 Nov; 87(20):205501. PubMed ID: 11690482
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nano-analysis of grain boundary and triple junction transport in nanocrystalline Ni/Cu.
    Reda Chellali M; Balogh Z; Schmitz G
    Ultramicroscopy; 2013 Sep; 132():164-70. PubMed ID: 23294555
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Vibrational properties of nanograins and interfaces in nanocrystalline materials.
    Stankov S; Yue YZ; Miglierini M; Sepiol B; Sergueev I; Chumakov AI; Hu L; Svec P; Rüffer R
    Phys Rev Lett; 2008 Jun; 100(23):235503. PubMed ID: 18643516
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Low-frequency vibrational properties of lysozyme in sugar aqueous solutions: a Raman scattering and molecular dynamics simulation study.
    Lerbret A; Affouard F; Bordat P; Hédoux A; Guinet Y; Descamps M
    J Chem Phys; 2009 Dec; 131(24):245103. PubMed ID: 20059115
    [TBL] [Abstract][Full Text] [Related]  

  • 5. High-frequency vibrational properties of metallic nanocrystalline grain boundaries.
    Derlet PM; Van Swygenhoven H
    Phys Rev Lett; 2004 Jan; 92(3):035505. PubMed ID: 14753887
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Regulating the mechanical properties of nanocrystalline nickel via molybdenum segregation: an atomistic study.
    Li Q; Zhang J; Tang H; Ye H; Zheng Y
    Nanotechnology; 2019 Jul; 30(27):275702. PubMed ID: 30836340
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Probing Crystallinity of Graphene Samples via the Vibrational Density of States.
    Jain SK; Juričić V; Barkema GT
    J Phys Chem Lett; 2015 Oct; 6(19):3897-902. PubMed ID: 26722890
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Grain boundary segregation and interdiffusion effects in nickel-copper alloys: an effective means to improve the thermal stability of nanocrystalline nickel.
    Pellicer E; Varea A; Sivaraman KM; Pané S; Suriñach S; Baró MD; Nogués J; Nelson BJ; Sort J
    ACS Appl Mater Interfaces; 2011 Jul; 3(7):2265-74. PubMed ID: 21667966
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Inverse grain-size effect on twinning in nanocrystalline Ni.
    Wu XL; Zhu YT
    Phys Rev Lett; 2008 Jul; 101(2):025503. PubMed ID: 18764195
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Phonon softening on the specific heat of nanocrystalline metals.
    Rojas DP; Fernández Barquín L; Rodríguez Fernández J; Rodríguez Fernández L; Gonzalez J
    Nanotechnology; 2010 Nov; 21(44):445702. PubMed ID: 20921593
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Elemental distribution, solute solubility and defect free volume in nanocrystalline restricted-equilibrium Cu-Ag alloys.
    Riedl T; Kirchner A; Eymann K; Shariq A; Schlesiger R; Schmitz G; Ruhnow M; Kieback B
    J Phys Condens Matter; 2013 Mar; 25(11):115401. PubMed ID: 23407023
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A new approach to grain boundary engineering for nanocrystalline materials.
    Kobayashi S; Tsurekawa S; Watanabe T
    Beilstein J Nanotechnol; 2016; 7():1829-1849. PubMed ID: 28144533
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Advance in orientation microscopy: quantitative analysis of nanocrystalline structures.
    Seyring M; Song X; Rettenmayr M
    ACS Nano; 2011 Apr; 5(4):2580-6. PubMed ID: 21375327
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Direct Observation of Sink-Dependent Defect Evolution in Nanocrystalline Iron under Irradiation.
    El-Atwani O; Nathaniel JE; Leff AC; Hattar K; Taheri ML
    Sci Rep; 2017 May; 7(1):1836. PubMed ID: 28500318
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A maximum in the strength of nanocrystalline copper.
    Schiøtz J; Jacobsen KW
    Science; 2003 Sep; 301(5638):1357-9. PubMed ID: 12958354
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Computer simulation of displacement cascades in nanocrystalline ni.
    Samaras M; Derlet PM; Van Swygenhoven H; Victoria M
    Phys Rev Lett; 2002 Mar; 88(12):125505. PubMed ID: 11909475
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Grain boundary effect on the dielectric properties of nanocrystalline beta-CuSCN.
    Prakash T; Ramasamy S
    J Nanosci Nanotechnol; 2009 Sep; 9(9):5537-40. PubMed ID: 19928259
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Linear grain growth kinetics and rotation in nanocrystalline Ni.
    Farkas D; Mohanty S; Monk J
    Phys Rev Lett; 2007 Apr; 98(16):165502. PubMed ID: 17501428
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Thick grain boundary induced strengthening in nanocrystalline Ni alloy.
    Ding J; Neffati D; Li Q; Su R; Li J; Xue S; Shang Z; Zhang Y; Wang H; Kulkarni Y; Zhang X
    Nanoscale; 2019 Dec; 11(48):23449-23458. PubMed ID: 31799538
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dislocation processes in the deformation of nanocrystalline aluminium by molecular-dynamics simulation.
    Yamakov V; Wolf D; Phillpot SR; Mukherjee AK; Gleiter H
    Nat Mater; 2002 Sep; 1(1):45-8. PubMed ID: 12618848
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.