These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
4. Anti-/pro-oxidant effects of phenolic compounds in cells: are colchicine metabolites chain-breaking antioxidants? Modriansky M; Tyurina YY; Tyurin VA; Matsura T; Shvedova AA; Yalowich JC; Kagan VE Toxicology; 2002 Aug; 177(1):105-17. PubMed ID: 12126799 [TBL] [Abstract][Full Text] [Related]
5. Phenoxyl radical-induced thiol-dependent generation of reactive oxygen species: implications for benzene toxicity. Stoyanovsky DA; Goldman R; Claycamp HG; Kagan VE Arch Biochem Biophys; 1995 Mar; 317(2):315-23. PubMed ID: 7893144 [TBL] [Abstract][Full Text] [Related]
6. Ascorbate interacts with reduced glutathione to scavenge phenoxyl radicals in HL60 cells. Cuddihy SL; Parker A; Harwood DT; Vissers MC; Winterbourn CC Free Radic Biol Med; 2008 Apr; 44(8):1637-44. PubMed ID: 18291121 [TBL] [Abstract][Full Text] [Related]
7. Direct evidence for recycling of myeloperoxidase-catalyzed phenoxyl radicals of a vitamin E homologue, 2,2,5,7,8-pentamethyl-6-hydroxy chromane, by ascorbate/dihydrolipoate in living HL-60 cells. Kagan VE; Kuzmenko AI; Shvedova AA; Kisin ER; Li R; Martin I; Quinn PJ; Tyurin VA; Tyurina YY; Yalowich JC Biochim Biophys Acta; 2003 Mar; 1620(1-3):72-84. PubMed ID: 12595076 [TBL] [Abstract][Full Text] [Related]
8. Reactions of phenoxyl radicals with NADPH-cytochrome P-450 oxidoreductase and NADPH: reduction of the radicals and inhibition of the enzyme. Goldman R; Tsyrlov IB; Grogan J; Kagan VE Biochemistry; 1997 Mar; 36(11):3186-92. PubMed ID: 9115995 [TBL] [Abstract][Full Text] [Related]
9. Myeloperoxidase-catalyzed redox-cycling of phenol promotes lipid peroxidation and thiol oxidation in HL-60 cells. Goldman R; Claycamp GH; Sweetland MA; Sedlov AV; Tyurin VA; Kisin ER; Tyurina YY; Ritov VB; Wenger SL; Grant SG; Kagan VE Free Radic Biol Med; 1999 Nov; 27(9-10):1050-63. PubMed ID: 10569638 [TBL] [Abstract][Full Text] [Related]
10. Antioxidant paradoxes of phenolic compounds: peroxyl radical scavenger and lipid antioxidant, etoposide (VP-16), inhibits sarcoplasmic reticulum Ca(2+)-ATPase via thiol oxidation by its phenoxyl radical. Ritov VB; Goldman R; Stoyanovsky DA; Menshikova EV; Kagan VE Arch Biochem Biophys; 1995 Aug; 321(1):140-52. PubMed ID: 7639514 [TBL] [Abstract][Full Text] [Related]
11. Peroxidase-catalyzed pro- versus antioxidant effects of 4-hydroxytamoxifen: enzyme specificity and biochemical sequelae. Day BW; Tyurin VA; Tyurina YY; Liu M; Facey JA; Carta G; Kisin ER; Dubey RK; Kagan VE Chem Res Toxicol; 1999 Jan; 12(1):28-37. PubMed ID: 9894015 [TBL] [Abstract][Full Text] [Related]
12. Lifespan of etoposide-treated human neutrophils is affected by antioxidant ability of quercetin. Kapiszewska M; Cierniak A; Elas M; Lankoff A Toxicol In Vitro; 2007 Sep; 21(6):1020-30. PubMed ID: 17467952 [TBL] [Abstract][Full Text] [Related]
13. Inhibition of free radical-mediated oxidation of cellular biomolecules by carboxylated chitooligosaccharides. Rajapakse N; Kim MM; Mendis E; Kim SK Bioorg Med Chem; 2007 Jan; 15(2):997-1003. PubMed ID: 17084635 [TBL] [Abstract][Full Text] [Related]
14. Sensitivity of K562 and HL-60 cells to edelfosine, an ether lipid drug, correlates with production of reactive oxygen species. Wagner BA; Buettner GR; Oberley LW; Burns CP Cancer Res; 1998 Jul; 58(13):2809-16. PubMed ID: 9661895 [TBL] [Abstract][Full Text] [Related]
15. Glutathione propagates oxidative stress triggered by myeloperoxidase in HL-60 cells. Evidence for glutathionyl radical-induced peroxidation of phospholipids and cytotoxicity. Borisenko GG; Martin I; Zhao Q; Amoscato AA; Tyurina YY; Kagan VE J Biol Chem; 2004 May; 279(22):23453-62. PubMed ID: 15039448 [TBL] [Abstract][Full Text] [Related]
16. Dietary flavonoid apigenin is a potential inducer of intracellular oxidative stress: the role in the interruptive apoptotic signal. Miyoshi N; Naniwa K; Yamada T; Osawa T; Nakamura Y Arch Biochem Biophys; 2007 Oct; 466(2):274-82. PubMed ID: 17870050 [TBL] [Abstract][Full Text] [Related]
17. Mechanisms of cardiolipin oxidation by cytochrome c: relevance to pro- and antiapoptotic functions of etoposide. Tyurina YY; Kini V; Tyurin VA; Vlasova II; Jiang J; Kapralov AA; Belikova NA; Yalowich JC; Kurnikov IV; Kagan VE Mol Pharmacol; 2006 Aug; 70(2):706-17. PubMed ID: 16690782 [TBL] [Abstract][Full Text] [Related]
18. Peroxidase-catalyzed oxidation of beta-carotene in HL-60 cells and in model systems: involvement of phenoxyl radicals. Tyurin VA; Carta G; Tyurina YY; Banni S; Day BW; Corongiu FP; Kagan VE Lipids; 1997 Feb; 32(2):131-42. PubMed ID: 9075202 [TBL] [Abstract][Full Text] [Related]
19. The antioxidant quercetin protects HL-60 cells with high myeloperoxidase activity against pro-oxidative and apoptotic effects of etoposide. Papież MA; Krzyściak W Acta Biochim Pol; 2014; 61(4):795-9. PubMed ID: 25493440 [TBL] [Abstract][Full Text] [Related]
20. Myeloperoxidase-catalyzed phenoxyl radicals of vitamin E homologue, 2,2,5,7,8-pentamethyl- 6-hydroxychromane, do not induce oxidative stress in live HL-60 cells. Kagan VE; Kuzmenko AI; Shvedova AA; Kisin ER; Tyurina YY; Yalowich JC Biochem Biophys Res Commun; 2000 Apr; 270(3):1086-92. PubMed ID: 10772954 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]