BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

272 related articles for article (PubMed ID: 11691848)

  • 1. Pattern and timing of gene duplication in animal genomes.
    Friedman R; Hughes AL
    Genome Res; 2001 Nov; 11(11):1842-7. PubMed ID: 11691848
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nematode and arthropod genomes provide new insights into the evolution of class 2 B1 GPCRs.
    Cardoso JC; Félix RC; Power DM
    PLoS One; 2014; 9(3):e92220. PubMed ID: 24651821
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Gene duplication and the structure of eukaryotic genomes.
    Friedman R; Hughes AL
    Genome Res; 2001 Mar; 11(3):373-81. PubMed ID: 11230161
    [TBL] [Abstract][Full Text] [Related]  

  • 4. New evidence for genome-wide duplications at the origin of vertebrates using an amphioxus gene set and completed animal genomes.
    Panopoulou G; Hennig S; Groth D; Krause A; Poustka AJ; Herwig R; Vingron M; Lehrach H
    Genome Res; 2003 Jun; 13(6A):1056-66. PubMed ID: 12799346
    [TBL] [Abstract][Full Text] [Related]  

  • 5. 2R or not 2R: testing hypotheses of genome duplication in early vertebrates.
    Hughes AL; Friedman R
    J Struct Funct Genomics; 2003; 3(1-4):85-93. PubMed ID: 12836688
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evolution of secretin family GPCR members in the metazoa.
    Cardoso JC; Pinto VC; Vieira FA; Clark MS; Power DM
    BMC Evol Biol; 2006 Dec; 6():108. PubMed ID: 17166275
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Differential loss of ancestral gene families as a source of genomic divergence in animals.
    Hughes AL; Friedman R
    Proc Biol Sci; 2004 Feb; 271 Suppl 3(Suppl 3):S107-9. PubMed ID: 15101434
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Analysis of lamprey and hagfish genes reveals a complex history of gene duplications during early vertebrate evolution.
    Escriva H; Manzon L; Youson J; Laudet V
    Mol Biol Evol; 2002 Sep; 19(9):1440-50. PubMed ID: 12200472
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comparison of complete nuclear receptor sets from the human, Caenorhabditis elegans and Drosophila genomes.
    Maglich JM; Sluder A; Guan X; Shi Y; McKee DD; Carrick K; Kamdar K; Willson TM; Moore JT
    Genome Biol; 2001; 2(8):RESEARCH0029. PubMed ID: 11532213
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The basic helix-loop-helix protein family: comparative genomics and phylogenetic analysis.
    Ledent V; Vervoort M
    Genome Res; 2001 May; 11(5):754-70. PubMed ID: 11337472
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The role of lineage-specific gene family expansion in the evolution of eukaryotes.
    Lespinet O; Wolf YI; Koonin EV; Aravind L
    Genome Res; 2002 Jul; 12(7):1048-59. PubMed ID: 12097341
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The large srh family of chemoreceptor genes in Caenorhabditis nematodes reveals processes of genome evolution involving large duplications and deletions and intron gains and losses.
    Robertson HM
    Genome Res; 2000 Feb; 10(2):192-203. PubMed ID: 10673277
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Detection of gene duplications and block duplications in eukaryotic genomes.
    Li WH; Gu Z; Cavalcanti AR; Nekrutenko A
    J Struct Funct Genomics; 2003; 3(1-4):27-34. PubMed ID: 12836682
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparative analysis of function and interaction of transcription factors in nematodes: extensive conservation of orthology coupled to rapid sequence evolution.
    Haerty W; Artieri C; Khezri N; Singh RS; Gupta BP
    BMC Genomics; 2008 Aug; 9():399. PubMed ID: 18752680
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ancient large-scale genome duplications: phylogenetic and linkage analyses shed light on chordate genome evolution.
    Pébusque MJ; Coulier F; Birnbaum D; Pontarotti P
    Mol Biol Evol; 1998 Sep; 15(9):1145-59. PubMed ID: 9729879
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Extent of gene duplication in the genomes of Drosophila, nematode, and yeast.
    Gu Z; Cavalcanti A; Chen FC; Bouman P; Li WH
    Mol Biol Evol; 2002 Mar; 19(3):256-62. PubMed ID: 11861885
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evolution of intron/exon structure of DEAD helicase family genes in Arabidopsis, Caenorhabditis, and Drosophila.
    Boudet N; Aubourg S; Toffano-Nioche C; Kreis M; Lecharny A
    Genome Res; 2001 Dec; 11(12):2101-14. PubMed ID: 11731501
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mystery of intron gain.
    Fedorov A; Roy S; Fedorova L; Gilbert W
    Genome Res; 2003 Oct; 13(10):2236-41. PubMed ID: 12975308
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evolutionary patterns of gene families generated in the early stage of vertebrates.
    Wang Y; Gu X
    J Mol Evol; 2000 Jul; 51(1):88-96. PubMed ID: 10903375
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Genomic gene clustering analysis of pathways in eukaryotes.
    Lee JM; Sonnhammer EL
    Genome Res; 2003 May; 13(5):875-82. PubMed ID: 12695325
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.