BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

274 related articles for article (PubMed ID: 11691848)

  • 21. Genomic gene clustering analysis of pathways in eukaryotes.
    Lee JM; Sonnhammer EL
    Genome Res; 2003 May; 13(5):875-82. PubMed ID: 12695325
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Comparative study of human mitochondrial proteome reveals extensive protein subcellular relocalization after gene duplications.
    Wang X; Huang Y; Lavrov DV; Gu X
    BMC Evol Biol; 2009 Nov; 9():275. PubMed ID: 19948060
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Phylogenetic analyses alone are insufficient to determine whether genome duplication(s) occurred during early vertebrate evolution.
    Horton AC; Mahadevan NR; Ruvinsky I; Gibson-Brown JJ
    J Exp Zool B Mol Dev Evol; 2003 Oct; 299(1):41-53. PubMed ID: 14508816
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Analysis of homologous gene clusters in Caenorhabditis elegans reveals striking regional cluster domains.
    Thomas JH
    Genetics; 2006 Jan; 172(1):127-43. PubMed ID: 16291650
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Phylogenomic analysis reveals ancient segmental duplications in the human genome.
    Hafeez M; Shabbir M; Altaf F; Abbasi AA
    Mol Phylogenet Evol; 2016 Jan; 94(Pt A):95-100. PubMed ID: 26327327
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Extensive genomic duplication during early chordate evolution.
    McLysaght A; Hokamp K; Wolfe KH
    Nat Genet; 2002 Jun; 31(2):200-4. PubMed ID: 12032567
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The temporal distribution of gene duplication events in a set of highly conserved human gene families.
    Friedman R; Hughes AL
    Mol Biol Evol; 2003 Jan; 20(1):154-61. PubMed ID: 12519918
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Genome-scale compositional comparisons in eukaryotes.
    Gentles AJ; Karlin S
    Genome Res; 2001 Apr; 11(4):540-6. PubMed ID: 11282969
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Evolutionary history of the human multigene families reveals widespread gene duplications throughout the history of animals.
    Pervaiz N; Shakeel N; Qasim A; Zehra R; Anwar S; Rana N; Xue Y; Zhang Z; Bao Y; Abbasi AA
    BMC Evol Biol; 2019 Jun; 19(1):128. PubMed ID: 31221090
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Phylogenetic and chromosomal analyses of multiple gene families syntenic with vertebrate Hox clusters.
    Sundström G; Larsson TA; Larhammar D
    BMC Evol Biol; 2008 Sep; 8():254. PubMed ID: 18803835
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Variations and constant patterns in eukaryotic MDR enzymes. Conclusions from novel structures and characterized genomes.
    Jörnvall H; Shafqat J; Persson B
    Chem Biol Interact; 2001 Jan; 130-132(1-3):491-8. PubMed ID: 11306070
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Unraveling ancient segmental duplication events in human genome by phylogenetic analysis of multigene families residing on HOX-cluster paralogons.
    Abbasi AA
    Mol Phylogenet Evol; 2010 Nov; 57(2):836-48. PubMed ID: 20696259
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Short-chain dehydrogenase/reductase (SDR) relationships: a large family with eight clusters common to human, animal, and plant genomes.
    Kallberg Y; Oppermann U; Jörnvall H; Persson B
    Protein Sci; 2002 Mar; 11(3):636-41. PubMed ID: 11847285
    [TBL] [Abstract][Full Text] [Related]  

  • 34. An insight into the evolutionary history of human MHC paralogon.
    Naz R; Tahir S; Abbasi AA
    Mol Phylogenet Evol; 2017 May; 110():1-6. PubMed ID: 28249742
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Patterns of gene duplication in Saccharomyces cerevisiae and Caenorhabditis elegans.
    Cavalcanti AR; Ferreira R; Gu Z; Li WH
    J Mol Evol; 2003 Jan; 56(1):28-37. PubMed ID: 12569420
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Phylogenies of developmentally important proteins do not support the hypothesis of two rounds of genome duplication early in vertebrate history.
    Hughes AL
    J Mol Evol; 1999 May; 48(5):565-76. PubMed ID: 10198122
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Gene finding in novel genomes.
    Korf I
    BMC Bioinformatics; 2004 May; 5():59. PubMed ID: 15144565
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Sampling the genomic pool of protein tyrosine kinase genes using the polymerase chain reaction with genomic DNA.
    Oates AC; Wollberg P; Achen MG; Wilks AF
    Biochem Biophys Res Commun; 1998 Aug; 249(3):660-7. PubMed ID: 9731193
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Genome duplication and gene-family evolution: the case of three OXPHOS gene families.
    De Grassi A; Lanave C; Saccone C
    Gene; 2008 Sep; 421(1-2):1-6. PubMed ID: 18573316
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Phylogenetic dating and characterization of gene duplications in vertebrates: the cartilaginous fish reference.
    Robinson-Rechavi M; Boussau B; Laudet V
    Mol Biol Evol; 2004 Mar; 21(3):580-6. PubMed ID: 14694077
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.