BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

625 related articles for article (PubMed ID: 11691922)

  • 21. Chromosomal double-strand breaks induce gene conversion at high frequency in mammalian cells.
    Taghian DG; Nickoloff JA
    Mol Cell Biol; 1997 Nov; 17(11):6386-93. PubMed ID: 9343400
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Modulation of Saccharomyces cerevisiae DNA double-strand break repair by SRS2 and RAD51.
    Milne GT; Ho T; Weaver DT
    Genetics; 1995 Mar; 139(3):1189-99. PubMed ID: 7768432
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A Rad52 homolog is required for RAD51-independent mitotic recombination in Saccharomyces cerevisiae.
    Bai Y; Symington LS
    Genes Dev; 1996 Aug; 10(16):2025-37. PubMed ID: 8769646
    [TBL] [Abstract][Full Text] [Related]  

  • 24. INO80-dependent chromatin remodeling regulates early and late stages of mitotic homologous recombination.
    Tsukuda T; Lo YC; Krishna S; Sterk R; Osley MA; Nickoloff JA
    DNA Repair (Amst); 2009 Mar; 8(3):360-9. PubMed ID: 19095087
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Synergistic actions of Rad51 and Rad52 in recombination and DNA repair.
    Benson FE; Baumann P; West SC
    Nature; 1998 Jan; 391(6665):401-4. PubMed ID: 9450758
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The Escherichia coli RecA protein complements recombination defective phenotype of the Saccharomyces cerevisiae rad52 mutant cells.
    Dudás A; Marková E; Vlasáková D; Kolman A; Bartosová Z; Brozmanová J; Chovanec M
    Yeast; 2003 Apr; 20(5):389-96. PubMed ID: 12673622
    [TBL] [Abstract][Full Text] [Related]  

  • 27. XRCC3 controls the fidelity of homologous recombination: roles for XRCC3 in late stages of recombination.
    Brenneman MA; Wagener BM; Miller CA; Allen C; Nickoloff JA
    Mol Cell; 2002 Aug; 10(2):387-95. PubMed ID: 12191483
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Rad52 and Rad59 exhibit both overlapping and distinct functions.
    Feng Q; Düring L; de Mayolo AA; Lettier G; Lisby M; Erdeniz N; Mortensen UH; Rothstein R
    DNA Repair (Amst); 2007 Jan; 6(1):27-37. PubMed ID: 16987715
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Replication Protein A Phosphorylation Facilitates RAD52-Dependent Homologous Recombination in BRCA-Deficient Cells.
    Carley AC; Jalan M; Subramanyam S; Roy R; Borgstahl GEO; Powell SN
    Mol Cell Biol; 2022 Feb; 42(2):e0052421. PubMed ID: 34928169
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Differential effects of Rad52p overexpression on gene targeting and extrachromosomal homologous recombination in a human cell line.
    Yáñez RJ; Porter AC
    Nucleic Acids Res; 2002 Feb; 30(3):740-8. PubMed ID: 11809887
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Characterization of mammalian RAD51 double strand break repair using non-lethal dominant-negative forms.
    Lambert S; Lopez BS
    EMBO J; 2000 Jun; 19(12):3090-9. PubMed ID: 10856252
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Spontaneous and double-strand break-induced recombination, and gene conversion tract lengths, are differentially affected by overexpression of wild-type or ATPase-defective yeast Rad54.
    Kim PM; Paffett KS; Solinger JA; Heyer WD; Nickoloff JA
    Nucleic Acids Res; 2002 Jul; 30(13):2727-35. PubMed ID: 12087154
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Specific interactions between the human RAD51 and RAD52 proteins.
    Shen Z; Cloud KG; Chen DJ; Park MS
    J Biol Chem; 1996 Jan; 271(1):148-52. PubMed ID: 8550550
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Recruitment of the recombinational repair machinery to a DNA double-strand break in yeast.
    Wolner B; van Komen S; Sung P; Peterson CL
    Mol Cell; 2003 Jul; 12(1):221-32. PubMed ID: 12887907
    [TBL] [Abstract][Full Text] [Related]  

  • 35. BRCA1 regulates RAD51 function in response to DNA damage and suppresses spontaneous sister chromatid replication slippage: implications for sister chromatid cohesion, genome stability, and carcinogenesis.
    Cousineau I; Abaji C; Belmaaza A
    Cancer Res; 2005 Dec; 65(24):11384-91. PubMed ID: 16357146
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Analysis of recombinational repair of DNA double-strand breaks in mammalian cells with I-SceI nuclease.
    Nickoloff JA; Brenneman MA
    Methods Mol Biol; 2004; 262():35-52. PubMed ID: 14769955
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Genetic evidence for different RAD52-dependent intrachromosomal recombination pathways in Saccharomyces cerevisiae.
    Aguilera A
    Curr Genet; 1995 Mar; 27(4):298-305. PubMed ID: 7614550
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Use of a chromosomal inverted repeat to demonstrate that the RAD51 and RAD52 genes of Saccharomyces cerevisiae have different roles in mitotic recombination.
    Rattray AJ; Symington LS
    Genetics; 1994 Nov; 138(3):587-95. PubMed ID: 7851757
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Deficiency in BRCA2 leads to increase in non-conservative homologous recombination.
    Larminat F; Germanier M; Papouli E; Defais M
    Oncogene; 2002 Aug; 21(33):5188-92. PubMed ID: 12140769
    [TBL] [Abstract][Full Text] [Related]  

  • 40. DNA double-strand breaks associated with replication forks are predominantly repaired by homologous recombination involving an exchange mechanism in mammalian cells.
    Arnaudeau C; Lundin C; Helleday T
    J Mol Biol; 2001 Apr; 307(5):1235-45. PubMed ID: 11292338
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 32.