These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

172 related articles for article (PubMed ID: 11691942)

  • 1. A versatile in vivo footprinting technique using 1,10-phenanthroline-copper complex to study important cellular processes.
    Basak S; Nagaraja V
    Nucleic Acids Res; 2001 Nov; 29(21):E105-5. PubMed ID: 11691942
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Recognition of tetrahedral 1,10-phenanthroline-cuprous chelates by transcriptionally active complexes does not depend on the sequence of the promoter.
    Gallagher J; Perrin DM; Chan L; Kwong E; Sigman D
    Chem Biol; 1996 Sep; 3(9):739-46. PubMed ID: 8939690
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A Pyrococcus homolog of the leucine-responsive regulatory protein, LrpA, inhibits transcription by abrogating RNA polymerase recruitment.
    Dahlke I; Thomm M
    Nucleic Acids Res; 2002 Feb; 30(3):701-10. PubMed ID: 11809882
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Separate contributions of UhpA and CAP to activation of transcription of the uhpT promoter of Escherichia coli.
    Olekhnovich IN; Dahl JL; Kadner RJ
    J Mol Biol; 1999 Oct; 292(5):973-86. PubMed ID: 10512697
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Footprinting DNA-protein complexes in situ following gel retardation assays using 1,10-phenanthroline-copper ion: Escherichia coli RNA polymerase-lac promoter complexes.
    Kuwabara MD; Sigman DS
    Biochemistry; 1987 Nov; 26(23):7234-8. PubMed ID: 3322397
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Interactions between RNA polymerase and the positive and negative regulators of transcription at the Escherichia coli gal operon.
    Dalma-Weiszhausz DD; Brenowitz M
    Biochemistry; 1996 Mar; 35(12):3735-45. PubMed ID: 8619994
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Solid phase technology improves coupled gel shift/footprinting analysis.
    Ragnhildstveit E; Fjose A; Becker PB; Quivy JP
    Nucleic Acids Res; 1997 Jan; 25(2):453-4. PubMed ID: 9016580
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hydroxyl radical footprinting.
    Zaychikov E; Schickor P; Denissova L; Heumann H
    Methods Mol Biol; 2001; 148():49-61. PubMed ID: 11357607
    [No Abstract]   [Full Text] [Related]  

  • 9. The bacterial DNA-binding protein H-NS represses ribosomal RNA transcription by trapping RNA polymerase in the initiation complex.
    Schröder O; Wagner R
    J Mol Biol; 2000 May; 298(5):737-48. PubMed ID: 10801345
    [TBL] [Abstract][Full Text] [Related]  

  • 10. DNA melting and promoter clearance by eukaryotic RNA polymerase I.
    Kahl BF; Li H; Paule MR
    J Mol Biol; 2000 May; 299(1):75-89. PubMed ID: 10860723
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Aromatic amino acids in region 2.3 of Escherichia coli sigma 70 participate collectively in the formation of an RNA polymerase-promoter open complex.
    Panaghie G; Aiyar SE; Bobb KL; Hayward RS; de Haseth PL
    J Mol Biol; 2000 Jun; 299(5):1217-30. PubMed ID: 10873447
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Binding of EcoP15I DNA methyltransferase to DNA reveals a large structural distortion within the recognition sequence.
    Reddy YV; Rao DN
    J Mol Biol; 2000 May; 298(4):597-610. PubMed ID: 10788323
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Improved methylation protection-based DNA footprinting to reveal structural distortion of DNA upon transcription factor binding.
    Reid KJ; Nelson CC
    Biotechniques; 2001 Jan; 30(1):20-2. PubMed ID: 11196311
    [No Abstract]   [Full Text] [Related]  

  • 14. Footprinting with exonuclease III.
    Metzger W; Heumann H
    Methods Mol Biol; 2001; 148():39-47. PubMed ID: 11357600
    [No Abstract]   [Full Text] [Related]  

  • 15. Interactions of transcription inhibitors with the Escherichia coli RNA polymerase-lacUV5 promoter open complex.
    Mazumder A; Perrin DM; McMillin D; Sigman DS
    Biochemistry; 1994 Mar; 33(8):2262-8. PubMed ID: 8117683
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Chemical nuclease activity of 5-phenyl-1,10-phenanthroline-copper ion detects intermediates in transcription initiation by E. Coli RNA polymerase.
    Thederahn T; Spassky A; Kuwabara MD; Sigman DS
    Biochem Biophys Res Commun; 1990 Apr; 168(2):756-62. PubMed ID: 2185756
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Domain 1.1 of the sigma(70) subunit of Escherichia coli RNA polymerase modulates the formation of stable polymerase/promoter complexes.
    Vuthoori S; Bowers CW; McCracken A; Dombroski AJ; Hinton DM
    J Mol Biol; 2001 Jun; 309(3):561-72. PubMed ID: 11397080
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Footprinting DNA-protein interactions in native polyacrylamide gels by chemical nucleolytic activity of 1,10-phenanthroline-copper.
    Papavassiliou AG
    Methods Mol Biol; 2009; 543():163-99. PubMed ID: 19378167
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The strong efficiency of the Escherichia coli gapA P1 promoter depends on a complex combination of functional determinants.
    Thouvenot B; Charpentier B; Branlant C
    Biochem J; 2004 Oct; 383(Pt 2):371-82. PubMed ID: 15250823
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mode of action of the TyrR protein: repression and activation of the tyrP promoter of Escherichia coli.
    Yang J; Hwang JS; Camakaris H; Irawaty W; Ishihama A; Pittard J
    Mol Microbiol; 2004 Apr; 52(1):243-56. PubMed ID: 15049824
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.