These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 11693291)

  • 21. Effects of biological clogging on 1,1,1-TCA and its intermediates distribution and fate in heterogeneous saturated bio-augmented permeable reactive barriers.
    Wang W; Wu Y
    Environ Sci Pollut Res Int; 2018 Oct; 25(28):28628-28641. PubMed ID: 30094670
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Apparent first-order kinetics in the transformation of 1,1,1-trichloroethane in groundwater following a transient release.
    Wing MR
    Chemosphere; 1997 Feb; 34(4):771-81. PubMed ID: 9569943
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Batch-test study on the dechlorination of 1,1,1-trichloroethane in contaminated aquifer material by zero-valent iron.
    Lookman R; Bastiaens L; Borremans B; Maesen M; Gemoets J; Diels L
    J Contam Hydrol; 2004 Oct; 74(1-4):133-44. PubMed ID: 15358490
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Bioaugmentation of Enterobacter cloacae AKS7 causes an enhanced degradation of low-density polyethylene (LDPE) in soil: a promising approach for the sustainable management of LDPE waste.
    Sarker RK; Chakraborty P; Sarkar S; Ghosh MM; Tribedi P
    Arch Microbiol; 2021 Dec; 204(1):74. PubMed ID: 34951695
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Two distinct Dehalobacter strains sequentially dechlorinate 1,1,1-trichloroethane and 1,1-dichloroethane at a field site treated with granular zero valent iron and guar gum.
    Yang MI; Previdsa M; Edwards EA; Sleep BE
    Water Res; 2020 Nov; 186():116310. PubMed ID: 32858243
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Natural attenuation mechanism and health risk assessment of 1,1,2-trichloroethane in contaminated groundwater.
    Yang J; Zhang Q; Fu X; Chen H; Hu P; Wang L
    J Environ Manage; 2019 Jul; 242():457-464. PubMed ID: 31071622
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Effects of bioaugmentation on indigenous PCB dechlorinating activity in sediment microcosms.
    Fagervold SK; Watts JE; May HD; Sowers KR
    Water Res; 2011 Jul; 45(13):3899-907. PubMed ID: 21601905
    [TBL] [Abstract][Full Text] [Related]  

  • 28. PCB dechlorination enhancement in Anacostia River sediment microcosms.
    Krumins V; Park JW; Son EK; Rodenburg LA; Kerkhof LJ; Häggblom MM; Fennell DE
    Water Res; 2009 Oct; 43(18):4549-58. PubMed ID: 19744693
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Cometabolic transformation of cis-1,2-dichloroethylene and cis-1,2-dichloroethylene epoxide by a butane-grown mixed culture.
    Kim Y; Semprini L
    Water Sci Technol; 2005; 52(8):125-31. PubMed ID: 16312959
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Degradation of 1,1,2,2-tetrachloroethane and accumulation of vinyl chloride in wetland sediment microcosms and in situ porewater: biogeochemical controls and associations with microbial communities.
    Lorah MM; Voytek MA
    J Contam Hydrol; 2004 May; 70(1-2):117-45. PubMed ID: 15068871
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Bioaugmentation with distinct Dehalobacter strains achieves chloroform detoxification in microcosms.
    Justicia-Leon SD; Higgins S; Mack EE; Griffiths DR; Tang S; Edwards EA; Löffler FE
    Environ Sci Technol; 2014; 48(3):1851-8. PubMed ID: 24392834
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A combined method for determining inhibition type, kinetic parameters, and inhibition coefficients for aerobic cometabolism of 1,1,1-trichloroethane by a butane-grown mixed culture.
    Kim Y; Arp DJ; Semprini L
    Biotechnol Bioeng; 2002 Mar; 77(5):564-76. PubMed ID: 11788954
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A multi-path chain kinetic reaction model to predict the evolution of 1,1,1-trichloroethane and its daughter products contaminant-plume in permeable reactive bio-barriers.
    Wang W; Wu Y
    Environ Pollut; 2019 Oct; 253():1021-1029. PubMed ID: 31434179
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Assessment of indigenous reductive dechlorinating potential at a TCE-contaminated site using microcosms, polymerase chain reaction analysis, and site data.
    Fennell DE; Carroll AB; Gossett JM; Zinder SH
    Environ Sci Technol; 2001 May; 35(9):1830-9. PubMed ID: 11355200
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Biodegradation of ethylene dibromide (1,2-dibromoethane [EDB]) in microcosms simulating in situ and biostimulated conditions.
    McKeever R; Sheppard D; Nüsslein K; Baek KH; Rieber K; Ergas SJ; Forbes R; Hilyard M; Park C
    J Hazard Mater; 2012 Mar; 209-210():92-8. PubMed ID: 22301079
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Benzene Degradation by a Variovorax Species within a Coal Tar-Contaminated Groundwater Microbial Community.
    Posman KM; DeRito CM; Madsen EL
    Appl Environ Microbiol; 2017 Feb; 83(4):. PubMed ID: 27913419
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Development of an attached-growth process for the on-site bioremediation of an aquifer polluted by chlorinated solvents.
    Frascari D; Bucchi G; Doria F; Rosato A; Tavanaie N; Salviulo R; Ciavarelli R; Pinelli D; Fraraccio S; Zanaroli G; Fava F
    Biodegradation; 2014 Jun; 25(3):337-50. PubMed ID: 24096531
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Potential for cometabolic biodegradation of 1,4-dioxane in aquifers with methane or ethane as primary substrates.
    Hatzinger PB; Banerjee R; Rezes R; Streger SH; McClay K; Schaefer CE
    Biodegradation; 2017 Dec; 28(5-6):453-468. PubMed ID: 29022194
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Concurrent bioremediation of perchlorate and 1,1,1-trichloroethane in an emulsified oil barrier.
    Borden RC
    J Contam Hydrol; 2007 Oct; 94(1-2):13-33. PubMed ID: 17614158
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Effects of 1,1,1-trichloroethane on enzymatic activity and bacterial community in anaerobic microcosm form sequencing batch reactors.
    Li H; Zhang W; Li L; Liu YD; Lin KF; Lu SG; Mu BZ; Du XM; Lu Q; Zhang Q; Shen TT; Li BZ; Zhao LM; Li YY
    Ecotoxicology; 2012 Jul; 21(5):1426-35. PubMed ID: 22543958
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.