BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

165 related articles for article (PubMed ID: 11693387)

  • 1. Slow brain potentials associated with motor preparation and stimulus anticipation.
    Philipova D; Popivanov D; Georgieva S; Tchukanova R
    Acta Physiol Pharmacol Bulg; 2001; 26(1-2):107-10. PubMed ID: 11693387
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Component-specific self-regulation of slow cortical potentials and its effect on behavior: an exploratory study.
    Siniatchkin M; Gerber WD
    Appl Psychophysiol Biofeedback; 2011 Mar; 36(1):15-25. PubMed ID: 20645126
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Specific task anticipation versus unspecific orienting reaction during early contingent negative variation.
    Bender S; Resch F; Weisbrod M; Oelkers-Ax R
    Clin Neurophysiol; 2004 Aug; 115(8):1836-45. PubMed ID: 15261862
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The interaction of task-relevant and task-irrelevant stimulus features in the number/size congruency paradigm: an ERP study.
    Szucs D; Soltész F
    Brain Res; 2008 Jan; 1190():143-58. PubMed ID: 18076868
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Modifications of cognitive and motor tasks affect the occurrence of event-related potentials in the human cortex.
    Rektor I; Brázdil M; Nestrasil I; Bares M; Daniel P
    Eur J Neurosci; 2007 Sep; 26(5):1371-80. PubMed ID: 17767513
    [TBL] [Abstract][Full Text] [Related]  

  • 6. How do children prepare to react? Imaging maturation of motor preparation and stimulus anticipation by late contingent negative variation.
    Bender S; Weisbrod M; Bornfleth H; Resch F; Oelkers-Ax R
    Neuroimage; 2005 Oct; 27(4):737-52. PubMed ID: 16027009
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Information processing to rare and frequent warning stimuli in a C.N.V. paradigm.
    Hamon JF
    Acta Physiol Hung; 1990; 76(3):175-82. PubMed ID: 2100098
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Contingent negative variation elicited before jaw and tongue movements.
    Yoshida K; Iizuka T
    J Oral Rehabil; 2005 Dec; 32(12):871-9. PubMed ID: 16297033
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [The anticipatory potential (contingent negative variation) as an indicator of neuronal information processing in relation to changes in slow potentials in the EEG].
    Korunka C; Bauer H; Wolek A; Leodolter M
    Z Exp Angew Psychol; 1990; 37(1):52-68. PubMed ID: 2333723
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Motor and nonmotor event-related potentials during a complex processing task.
    Hillman CH; Apparies RJ; Hatfield BD
    Psychophysiology; 2000 Nov; 37(6):731-6. PubMed ID: 11117453
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cognitive- and movement-related potentials recorded in the human basal ganglia.
    Rektor I; Bares M; Brázdil M; Kanovský P; Rektorová I; Sochurková D; Kubová D; Kuba R; Daniel P
    Mov Disord; 2005 May; 20(5):562-8. PubMed ID: 15666424
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Relation between warning stimuli and contingent negative variation in man.
    Hamon JF; Seri B
    Act Nerv Super (Praha); 1987 Dec; 29(4):249-56. PubMed ID: 3439423
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Development of preparatory activity indexed by the contingent negative variation in children.
    Flores AB; Digiacomo MR; Meneres S; Trigo E; Gómez CM
    Brain Cogn; 2009 Nov; 71(2):129-40. PubMed ID: 19500893
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Brain dynamics in the auditory oddball task as a function of stimulus intensity and task requirements.
    Barry RJ; Rushby JA; Smith JL; Clarke AR; Croft RJ
    Int J Psychophysiol; 2009 Sep; 73(3):313-25. PubMed ID: 19460406
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Brain activity during interval timing depends on sensory structure.
    Pfeuty M; Ragot R; Pouthas V
    Brain Res; 2008 Apr; 1204():112-7. PubMed ID: 18336798
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Grouping mechanisms in response preparation investigated with event-related brain potentials.
    Sangals J; Dippel G; Sommer W
    Psychophysiology; 2012 Mar; 49(3):421-6. PubMed ID: 22091759
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dissociations between motor-related EEG measures in a cued movement sequence task.
    Gladwin TE; 't Hart BM; de Jong R
    Cortex; 2008 May; 44(5):521-36. PubMed ID: 18387585
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Motor processing after movement execution as revealed by evoked and induced activity.
    Bender S; Oelkers-Ax R; Resch F; Weisbrod M
    Brain Res Cogn Brain Res; 2004 Sep; 21(1):49-58. PubMed ID: 15325412
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Examining task-dependencies of different attentional processes as reflected in the P3a and reorienting negativity components of the human event-related brain potential.
    Munka L; Berti S
    Neurosci Lett; 2006 Apr; 396(3):177-81. PubMed ID: 16356637
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Anticipated action consequences as a nexus between action and perception: evidence from event-related potentials.
    Nikolaev AR; Ziessler M; Dimova K; van Leeuwen C
    Biol Psychol; 2008 Apr; 78(1):53-65. PubMed ID: 18289769
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.