These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 11693419)

  • 1. Two-dimensional finite element model for oxygen transfer in cross-flow hollow fiber membrane artificial lungs.
    Dierickx PW; de Wachter DS; Verdonck PR
    Int J Artif Organs; 2001 Sep; 24(9):628-35. PubMed ID: 11693419
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Uniformity of the fluid flow velocities within hollow fiber membranes of blood oxygenation devices.
    Mazaheri AR; Ahmadi G
    Artif Organs; 2006 Jan; 30(1):10-5. PubMed ID: 16409392
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Computational Modeling of Oxygen Transfer in Artificial Lungs.
    Kaesler A; Rosen M; Schmitz-Rode T; Steinseifer U; Arens J
    Artif Organs; 2018 Aug; 42(8):786-799. PubMed ID: 30043394
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Three-dimensional membranes for artificial lungs: Comparison of flow-induced hemolysis.
    Hesselmann F; Arnemann D; Bongartz P; Wessling M; Cornelissen C; Schmitz-Rode T; Steinseifer U; Jansen SV; Arens J
    Artif Organs; 2022 Mar; 46(3):412-426. PubMed ID: 34606117
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Experimental Approach to Visualize Flow in a Stacked Hollow Fiber Bundle of an Artificial Lung With Particle Image Velocimetry.
    Kaesler A; Schlanstein PC; Hesselmann F; Büsen M; Klaas M; Roggenkamp D; Schmitz-Rode T; Steinseifer U; Arens J
    Artif Organs; 2017 Jun; 41(6):529-538. PubMed ID: 27925231
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Polysulfone coating for hollow fiber artificial lungs operated at hypobaric and hyperbaric pressures.
    High KM; Snider MT; Panol GR; Richard RB; Gray DN
    ASAIO J; 1996; 42(5):M442-5. PubMed ID: 8944920
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Computer-assisted design of an implantable, intrathoracic artificial lung.
    Vaslef SN; Mockros LF; Cook KE; Leonard RJ; Sung JC; Anderson RW
    Artif Organs; 1994 Nov; 18(11):813-7. PubMed ID: 7864729
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of Hollow Fiber Membrane Oscillation on an Artificial Lung.
    Orizondo RA; Gino G; Sultzbach G; Madhani SP; Frankowski BJ; Federspiel WJ
    Ann Biomed Eng; 2018 May; 46(5):762-771. PubMed ID: 29464460
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hemoglobin-based oxygen carrier and convection enhanced oxygen transport in a hollow fiber bioreactor.
    Chen G; Palmer AF
    Biotechnol Bioeng; 2009 Apr; 102(6):1603-12. PubMed ID: 19072844
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Pulsatile flow and oxygen transport past cylindrical fiber arrays for an artificial lung: computational and experimental studies.
    Zierenberg JR; Fujioka H; Cook KE; Grotberg JB
    J Biomech Eng; 2008 Jun; 130(3):031019. PubMed ID: 18532868
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Pulsatile flow past a cylinder: an experimental model of flow in an artificial lung.
    Lin YC; Brant DO; Bartlett RH; Hirschl RB; Bull JL
    ASAIO J; 2006; 52(6):614-23. PubMed ID: 17117049
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Finite element model for nutrient distribution analysis of a hollow fiber membrane bioreactor.
    Unnikrishnan GU; Unnikrishnan VU; Reddy JN
    Int J Numer Method Biomed Eng; 2012 Feb; 28(2):229-38. PubMed ID: 25099327
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Predicting membrane oxygenator pressure drop using computational fluid dynamics.
    Gage KL; Gartner MJ; Burgreen GW; Wagner WR
    Artif Organs; 2002 Jul; 26(7):600-7. PubMed ID: 12081518
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A new multilayered composite hollow fiber membrane for artificial lung.
    Kamo J; Uchida M; Hirai T; Yosida H; Kamada K; Takemura T
    Artif Organs; 1990 Oct; 14(5):369-72. PubMed ID: 2241604
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Contributions of a finite element model for the geometric optimization of an implantable bioartificial pancreas.
    Dulong JL; Legallais C
    Artif Organs; 2002 Jul; 26(7):583-9. PubMed ID: 12081516
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evaluation of plasma resistant hollow fiber membranes for artificial lungs.
    Eash HJ; Jones HM; Hattler BG; Federspiel WJ
    ASAIO J; 2004; 50(5):491-7. PubMed ID: 15497391
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Design and evaluation of a new, low pressure loss, implantable artificial lung.
    Vaslef SN; Cook KE; Leonard RJ; Mockros LF; Anderson RW
    ASAIO J; 1994; 40(3):M522-6. PubMed ID: 8555571
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mass transfer characteristics of artificial lungs.
    Dierickx PW; De Wachter DS; De Somer F; Van Nooten G; Verdonck PR
    ASAIO J; 2001; 47(6):628-33. PubMed ID: 11730201
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Membrane gas transfer under conditions of creeping flow: modeling gas composition effects.
    Fang Y; Clapp LW; Hozalski RM; Novak PJ; Semmens MJ
    Water Res; 2004 May; 38(10):2489-98. PubMed ID: 15159152
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Computationally two-dimensional finite-difference model for hollow-fibre blood-gas exchange devices.
    Baker DA; Holte JE; Patankar SV
    Med Biol Eng Comput; 1991 Sep; 29(5):482-8. PubMed ID: 1817209
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.