These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

109 related articles for article (PubMed ID: 11693699)

  • 41. Assessment of the reliability of central and peripheral fatigue after sustained maximal voluntary contraction of the quadriceps muscle.
    Place N; Maffiuletti NA; Martin A; Lepers R
    Muscle Nerve; 2007 Apr; 35(4):486-95. PubMed ID: 17221875
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Central and peripheral components of exercise-related fatigability in myotonic dystrophy type 1.
    Boƫrio D; Lefaucheur JP; Bassez G; Hogrel JY
    Acta Neurol Scand; 2012 Jan; 125(1):38-46. PubMed ID: 22188374
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Twitch interpolation: superimposed twitches decline progressively during a tetanic contraction of human adductor pollicis.
    Gandevia SC; McNeil CJ; Carroll TJ; Taylor JL
    J Physiol; 2013 Mar; 591(5):1373-83. PubMed ID: 23283762
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Kinetics of neuromuscular changes during low-frequency electrical stimulation.
    Papaiordanidou M; Guiraud D; Varray A
    Muscle Nerve; 2010 Jan; 41(1):54-62. PubMed ID: 19882645
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Non-uniform mechanical activity of quadriceps muscle during fatigue by repeated maximal voluntary contraction in humans.
    Kouzaki M; Shinohara M; Fukunaga T
    Eur J Appl Physiol Occup Physiol; 1999 Jun; 80(1):9-15. PubMed ID: 10367717
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Determining central activation failure and peripheral fatigue in the course of sustained maximal voluntary contractions: a model-based approach.
    Schillings ML; Stegeman DF; Zwarts MJ
    J Appl Physiol (1985); 2005 Jun; 98(6):2292-7. PubMed ID: 15705721
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Motor unit recruitment and derecruitment induced by brief increase in contraction amplitude of the human trapezius muscle.
    Westad C; Westgaard RH; De Luca CJ
    J Physiol; 2003 Oct; 552(Pt 2):645-56. PubMed ID: 14561844
    [TBL] [Abstract][Full Text] [Related]  

  • 48. A new EMG frequency-based fatigue threshold test.
    Hendrix CR; Housh TJ; Johnson GO; Mielke M; Camic CL; Zuniga JM; Schmidt RJ
    J Neurosci Methods; 2009 Jun; 181(1):45-51. PubMed ID: 19394361
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Increases in corticospinal responsiveness during a sustained submaximal plantar flexion.
    Hoffman BW; Oya T; Carroll TJ; Cresswell AG
    J Appl Physiol (1985); 2009 Jul; 107(1):112-20. PubMed ID: 19443741
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Sustained contraction at very low forces produces prominent supraspinal fatigue in human elbow flexor muscles.
    Smith JL; Martin PG; Gandevia SC; Taylor JL
    J Appl Physiol (1985); 2007 Aug; 103(2):560-8. PubMed ID: 17463302
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Effect of voluntary contraction intensity on the H-reflex and V-wave responses.
    Pensini M; Martin A
    Neurosci Lett; 2004 Sep; 367(3):369-74. PubMed ID: 15337268
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Recovery from supraspinal fatigue is slowed in old adults after fatiguing maximal isometric contractions.
    Hunter SK; Todd G; Butler JE; Gandevia SC; Taylor JL
    J Appl Physiol (1985); 2008 Oct; 105(4):1199-209. PubMed ID: 18687979
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Advances in processing of surface myoelectric signals: Part 1.
    Merletti R; Lo Conte LR
    Med Biol Eng Comput; 1995 May; 33(3 Spec No):362-72. PubMed ID: 7666682
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Effects of acute fatigue on the volitional and magnetically-evoked electromechanical delay of the knee flexors in males and females.
    Minshull C; Gleeson N; Walters-Edwards M; Eston R; Rees D
    Eur J Appl Physiol; 2007 Jul; 100(4):469-78. PubMed ID: 17468881
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Conduction velocity and EMG power spectrum changes in fatigue of sustained maximal efforts.
    Bigland-Ritchie B; Donovan EF; Roussos CS
    J Appl Physiol Respir Environ Exerc Physiol; 1981 Nov; 51(5):1300-5. PubMed ID: 7298467
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Modeling of surface myoelectric signals--Part II: Model-based signal interpretation.
    Merletti R; Roy SH; Kupa E; Roatta S; Granata A
    IEEE Trans Biomed Eng; 1999 Jul; 46(7):821-9. PubMed ID: 10396900
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Repeatability of electrically evoked EMG signals in the human vastus medialis muscle.
    Merletti R; Fiorito A; Lo Conte LR; Cisari C
    Muscle Nerve; 1998 Feb; 21(2):184-93. PubMed ID: 9466593
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Variable-frequency stimulation patterns for the optimization of force during muscle fatigue. Muscle wisdom and the catch-like property.
    Binder-Macleod SA
    Adv Exp Med Biol; 1995; 384():227-40. PubMed ID: 8585453
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Electrically evoked myoelectric signals in back muscles: effect of side dominance.
    Merletti R; De Luca CJ; Sathyan D
    J Appl Physiol (1985); 1994 Nov; 77(5):2104-14. PubMed ID: 7868422
    [TBL] [Abstract][Full Text] [Related]  

  • 60. [Muscle fiber conduction velocity and frequency parameters of surface EMG during fatigue of the human masseter muscle. 2. Frequency parameters].
    Tokunaga T
    Nihon Hotetsu Shika Gakkai Zasshi; 1989 Aug; 33(4):804-17. PubMed ID: 2489736
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.