These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
148 related articles for article (PubMed ID: 11693915)
1. Effect of overexpression of Saccharomyces cerevisiae Pad1p on the resistance to phenylacrylic acids and lignocellulose hydrolysates under aerobic and oxygen-limited conditions. Larsson S; Nilvebrant NO; Jönsson LJ Appl Microbiol Biotechnol; 2001 Oct; 57(1-2):167-74. PubMed ID: 11693915 [TBL] [Abstract][Full Text] [Related]
2. PAD1 and FDC1 are essential for the decarboxylation of phenylacrylic acids in Saccharomyces cerevisiae. Mukai N; Masaki K; Fujii T; Kawamukai M; Iefuji H J Biosci Bioeng; 2010 Jun; 109(6):564-9. PubMed ID: 20471595 [TBL] [Abstract][Full Text] [Related]
3. Development of a Saccharomyces cerevisiae strain with enhanced resistance to phenolic fermentation inhibitors in lignocellulose hydrolysates by heterologous expression of laccase. Larsson S; Cassland P; Jönsson LJ Appl Environ Microbiol; 2001 Mar; 67(3):1163-70. PubMed ID: 11229906 [TBL] [Abstract][Full Text] [Related]
6. Decarboxylation of sorbic acid by spoilage yeasts is associated with the PAD1 gene. Stratford M; Plumridge A; Archer DB Appl Environ Microbiol; 2007 Oct; 73(20):6534-42. PubMed ID: 17766451 [TBL] [Abstract][Full Text] [Related]
7. Single nucleotide polymorphisms of PAD1 and FDC1 show a positive relationship with ferulic acid decarboxylation ability among industrial yeasts used in alcoholic beverage production. Mukai N; Masaki K; Fujii T; Iefuji H J Biosci Bioeng; 2014 Jul; 118(1):50-5. PubMed ID: 24507903 [TBL] [Abstract][Full Text] [Related]
8. Treatment with lignin residue: a novel method for detoxification of lignocellulose hydrolysates. Björklund L; Larsson S; Jönsson LJ; Reimann E; Nilvebrant NO Appl Biochem Biotechnol; 2002; 98-100():563-75. PubMed ID: 12018282 [TBL] [Abstract][Full Text] [Related]
9. Biotechnological strategies to overcome inhibitors in lignocellulose hydrolysates for ethanol production: review. Parawira W; Tekere M Crit Rev Biotechnol; 2011 Mar; 31(1):20-31. PubMed ID: 20513164 [TBL] [Abstract][Full Text] [Related]
10. [Inhibitors and their effects on Saccharomyces cerevisiae and relevant countermeasures in bioprocess of ethanol production from lignocellulose--a review]. Li H; Zhang X; Shen Y; Dong Y; Bao X Sheng Wu Gong Cheng Xue Bao; 2009 Sep; 25(9):1321-8. PubMed ID: 19938474 [TBL] [Abstract][Full Text] [Related]
11. Enhancing volatile phenol concentrations in wine by expressing various phenolic acid decarboxylase genes in Saccharomyces cerevisiae. Smit A; Cordero Otero RR; Lambrechts MG; Pretorius IS; Van Rensburg P J Agric Food Chem; 2003 Aug; 51(17):4909-15. PubMed ID: 12903944 [TBL] [Abstract][Full Text] [Related]
12. Continuous fermentation of undetoxified dilute acid lignocellulose hydrolysate by Saccharomyces cerevisiae ATCC 96581 using cell recirculation. Brandberg T; Sanandaji N; Gustafsson L; Franzén CJ Biotechnol Prog; 2005; 21(4):1093-101. PubMed ID: 16080688 [TBL] [Abstract][Full Text] [Related]
13. PAD1 encodes phenylacrylic acid decarboxylase which confers resistance to cinnamic acid in Saccharomyces cerevisiae. Clausen M; Lamb CJ; Megnet R; Doerner PW Gene; 1994 May; 142(1):107-12. PubMed ID: 8181743 [TBL] [Abstract][Full Text] [Related]
14. Influence of lignocellulose-derived aromatic compounds on oxygen-limited growth and ethanolic fermentation by Saccharomyces cerevisiae. Larsson S; Quintana-Sáinz A; Reimann A; Nilvebrant NO; Jönsson LJ Appl Biochem Biotechnol; 2000; 84-86():617-32. PubMed ID: 10849822 [TBL] [Abstract][Full Text] [Related]
15. Requirement of a Functional Flavin Mononucleotide Prenyltransferase for the Activity of a Bacterial Decarboxylase in a Heterologous Muconic Acid Pathway in Saccharomyces cerevisiae. Weber HE; Gottardi M; Brückner C; Oreb M; Boles E; Tripp J Appl Environ Microbiol; 2017 May; 83(10):. PubMed ID: 28283523 [TBL] [Abstract][Full Text] [Related]
16. Removal and upgrading of lignocellulosic fermentation inhibitors by in situ biocatalysis and liquid-liquid extraction. Tomek KJ; Saldarriaga CR; Velasquez FP; Liu T; Hodge DB; Whitehead TA Biotechnol Bioeng; 2015 Mar; 112(3):627-32. PubMed ID: 25311910 [TBL] [Abstract][Full Text] [Related]
17. Styrene production from a biomass-derived carbon source using a coculture system of phenylalanine ammonia lyase and phenylacrylic acid decarboxylase-expressing Streptomyces lividans transformants. Fujiwara R; Noda S; Tanaka T; Kondo A J Biosci Bioeng; 2016 Dec; 122(6):730-735. PubMed ID: 27405271 [TBL] [Abstract][Full Text] [Related]
18. Effect of different forms of alkali treatment on specific fermentation inhibitors and on the fermentability of lignocellulose hydrolysates for production of fuel ethanol. Persson P; Andersson J; Gorton L; Larsson S; Nilvebrant NO; Jönsson LJ J Agric Food Chem; 2002 Sep; 50(19):5318-25. PubMed ID: 12207468 [TBL] [Abstract][Full Text] [Related]
19. Overexpression of PAD1 and FDC1 results in significant cinnamic acid decarboxylase activity in Saccharomyces cerevisiae. Richard P; Viljanen K; Penttilä M AMB Express; 2015; 5():12. PubMed ID: 25852989 [TBL] [Abstract][Full Text] [Related]
20. Cofactor dependence in furan reduction by Saccharomyces cerevisiae in fermentation of acid-hydrolyzed lignocellulose. Nilsson A; Gorwa-Grauslund MF; Hahn-Hägerdal B; Lidén G Appl Environ Microbiol; 2005 Dec; 71(12):7866-71. PubMed ID: 16332761 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]