BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 11694004)

  • 1. Mineral content of calcified tissues in cystic fibrosis mice.
    Gawenis LR; Spencer P; Hillman LS; Harline MC; Morris JS; Clarke LL
    Biol Trace Elem Res; 2001 Oct; 83(1):69-81. PubMed ID: 11694004
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cystic fibrosis transmembrane regulator gene (CFTR) is associated with abnormal enamel formation.
    Arquitt CK; Boyd C; Wright JT
    J Dent Res; 2002 Jul; 81(7):492-6. PubMed ID: 12161463
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Enamel mineral composition of normal and cystic fibrosis transgenic mice.
    Wright JT; Hall KI; Grubb BR
    Adv Dent Res; 1996 Nov; 10(2):270-4; discussion 275. PubMed ID: 9206347
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Abnormal enamel development in a cystic fibrosis transgenic mouse model.
    Wright JT; Kiefer CL; Hall KI; Grubb BR
    J Dent Res; 1996 Apr; 75(4):966-73. PubMed ID: 8708137
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Small intestinal glucose absorption in cystic fibrosis: a study in human and transgenic DeltaF508 cystic fibrosis mouse tissues.
    Hardcastle J; Harwood MD; Taylor CJ
    J Pharm Pharmacol; 2004 Mar; 56(3):329-38. PubMed ID: 15025858
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Composition of mineralizing incisor enamel in cystic fibrosis transmembrane conductance regulator-deficient mice.
    Bronckers AL; Lyaruu DM; Guo J; Bijvelds MJ; Bervoets TJ; Zandieh-Doulabi B; Medina JF; Li Z; Zhang Y; DenBesten PK
    Eur J Oral Sci; 2015 Feb; 123(1):9-16. PubMed ID: 25557910
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Transient receptor potential canonical channel 6 links Ca2+ mishandling to cystic fibrosis transmembrane conductance regulator channel dysfunction in cystic fibrosis.
    Antigny F; Norez C; Dannhoffer L; Bertrand J; Raveau D; Corbi P; Jayle C; Becq F; Vandebrouck C
    Am J Respir Cell Mol Biol; 2011 Jan; 44(1):83-90. PubMed ID: 20203293
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Oim mice exhibit altered femur and incisor mineral composition and decreased bone mineral density.
    Phillips CL; Bradley DA; Schlotzhauer CL; Bergfeld M; Libreros-Minotta C; Gawenis LR; Morris JS; Clarke LL; Hillman LS
    Bone; 2000 Aug; 27(2):219-26. PubMed ID: 10913914
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Severe osteopenia in CFTR-null mice.
    Dif F; Marty C; Baudoin C; de Vernejoul MC; Levi G
    Bone; 2004 Sep; 35(3):595-603. PubMed ID: 15336594
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The cystic fibrosis transmembrane conductance regulator (CFTR) is expressed in maturation stage ameloblasts, odontoblasts and bone cells.
    Bronckers A; Kalogeraki L; Jorna HJ; Wilke M; Bervoets TJ; Lyaruu DM; Zandieh-Doulabi B; Denbesten P; de Jonge H
    Bone; 2010 Apr; 46(4):1188-96. PubMed ID: 20004757
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Iron Homeostasis and Inflammatory Status in Mice Deficient for the Cystic Fibrosis Transmembrane Regulator.
    Deschemin JC; Allouche S; Brouillard F; Vaulont S
    PLoS One; 2015; 10(12):e0145685. PubMed ID: 26709821
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Altered pH regulation during enamel development in the cystic fibrosis mouse incisor.
    Sui W; Boyd C; Wright JT
    J Dent Res; 2003 May; 82(5):388-92. PubMed ID: 12709507
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fecal dysbiosis and inflammation in intestinal-specific Cftr knockout mice on regimens preventing intestinal obstruction.
    Young SM; Woode RA; Williams EC; Ericsson AC; Clarke LL
    Physiol Genomics; 2024 Mar; 56(3):247-264. PubMed ID: 38073491
    [TBL] [Abstract][Full Text] [Related]  

  • 14. CFTR is required for cAMP inhibition of intestinal Na+ absorption in a cystic fibrosis mouse model.
    Clarke LL; Harline MC
    Am J Physiol; 1996 Feb; 270(2 Pt 1):G259-67. PubMed ID: 8779967
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Understanding how cystic fibrosis mutations disrupt CFTR function: from single molecules to animal models.
    Wang Y; Wrennall JA; Cai Z; Li H; Sheppard DN
    Int J Biochem Cell Biol; 2014 Jul; 52():47-57. PubMed ID: 24727426
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cystic fibrosis mouse model-dependent intestinal structure and gut microbiome.
    Bazett M; Honeyman L; Stefanov AN; Pope CE; Hoffman LR; Haston CK
    Mamm Genome; 2015 Jun; 26(5-6):222-34. PubMed ID: 25721416
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Overexpression of RANKL in osteoblasts: a possible mechanism of susceptibility to bone disease in cystic fibrosis.
    Delion M; Braux J; Jourdain ML; Guillaume C; Bour C; Gangloff S; Pimpec-Barthes FL; Sermet-Gaudelus I; Jacquot J; Velard F
    J Pathol; 2016 Sep; 240(1):50-60. PubMed ID: 27235726
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Modification of the salivary secretion assay in F508del mice--the murine equivalent of the human sweat test.
    Droebner K; Sandner P
    J Cyst Fibros; 2013 Dec; 12(6):630-7. PubMed ID: 23768658
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Generation of a conditional null allele for Cftr in mice.
    Hodges CA; Cotton CU; Palmert MR; Drumm ML
    Genesis; 2008 Oct; 46(10):546-52. PubMed ID: 18802965
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A delta F508 mutation in mouse cystic fibrosis transmembrane conductance regulator results in a temperature-sensitive processing defect in vivo.
    French PJ; van Doorninck JH; Peters RH; Verbeek E; Ameen NA; Marino CR; de Jonge HR; Bijman J; Scholte BJ
    J Clin Invest; 1996 Sep; 98(6):1304-12. PubMed ID: 8823295
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.