These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 11694007)

  • 21. On the Methods to Measure Powder Flow.
    Tan G; Morton DA; Larson I
    Curr Pharm Des; 2015; 21(40):5751-65. PubMed ID: 26446467
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Prediction of granule packing and flow behavior based on particle size and shape analysis.
    Sandler N; Wilson D
    J Pharm Sci; 2010 Feb; 99(2):958-68. PubMed ID: 19653280
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Agglomeration tendency in dry pharmaceutical granular systems.
    Lachiver ED; Abatzoglou N; Cartilier L; Simard JS
    Eur J Pharm Biopharm; 2006 Oct; 64(2):193-9. PubMed ID: 16797949
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Investigation of a 2-step agglomeration process performed in a rotary processor using polyethylene glycol solutions as the primary binder liquid.
    Kristensen J
    AAPS PharmSciTech; 2006 Oct; 7(4):89. PubMed ID: 17233541
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Utility of Microcrystalline Cellulose for Improving Drug Content Uniformity in Tablet Manufacturing Using Direct Powder Compression.
    Nakamura S; Tanaka C; Yuasa H; Sakamoto T
    AAPS PharmSciTech; 2019 Mar; 20(4):151. PubMed ID: 30903317
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Particle Engineering Via Mechanical Dry Coating in the Design of Pharmaceutical Solid Dosage Forms.
    Qu L; Morton DA; Zhou QT
    Curr Pharm Des; 2015; 21(40):5802-14. PubMed ID: 26446461
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Roll compaction/dry granulation: pharmaceutical applications.
    Kleinebudde P
    Eur J Pharm Biopharm; 2004 Sep; 58(2):317-26. PubMed ID: 15296958
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The influence of direct compression powder blend transfer method from the container to the tablet press on product critical quality attributes: a case study.
    Teżyk M; Jakubowska E; Milczewska K; Milanowski B; Voelkel A; Lulek J
    Drug Dev Ind Pharm; 2017 Jun; 43(6):911-916. PubMed ID: 28032521
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Kinetic energy density and agglomerate abrasion rate during blending of agglomerates into powders.
    Willemsz TA; Hooijmaijers R; Rubingh CM; Tran TN; Frijlink HW; Vromans H; van der Voort Maarschalk K
    Eur J Pharm Sci; 2012 Jan; 45(1-2):211-5. PubMed ID: 22127372
    [TBL] [Abstract][Full Text] [Related]  

  • 30. V-blender segregation patterns for free-flowing materials: effects of blender capacity and fill level.
    Alexander A; Shinbrot T; Johnson B; Muzzio FJ
    Int J Pharm; 2004 Jan; 269(1):19-28. PubMed ID: 14698573
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Examining drug hydrophobicity in continuous wet granulation within a twin screw extruder.
    Li H; Thompson MR; O'Donnell KP
    Int J Pharm; 2015 Dec; 496(1):3-11. PubMed ID: 26232701
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The use of near-infrared and microwave resonance sensing to monitor a continuous roller compaction process.
    Austin J; Gupta A; Mcdonnell R; Reklaitis GV; Harris MT
    J Pharm Sci; 2013 Jun; 102(6):1895-1904. PubMed ID: 23568242
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Granulation of core particles suitable for film coating by agitation fluidized bed III. Effect of scale, agitator rotational speed and blade shape on granule properties and development of a high accuracy scale-up theory.
    Hamashita T; Ono T; Ono M; Tsunenari Y; Aketo T; Watano S
    Chem Pharm Bull (Tokyo); 2009 Apr; 57(4):325-31. PubMed ID: 19336925
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The effects of powder compressibility, speed of capsule filling and pre-compression on plug densification.
    Llusa M; Faulhammer E; Biserni S; Calzolari V; Lawrence S; Bresciani M; Khinast J
    Int J Pharm; 2014 Aug; 471(1-2):182-8. PubMed ID: 24836668
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Evaluation and prediction of powder flowability in pharmaceutical tableting.
    Hildebrandt C; Gopireddy SR; Fritsch AK; Profitlich T; Scherließ R; Urbanetz NA
    Pharm Dev Technol; 2019 Jan; 24(1):35-47. PubMed ID: 29227171
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Effect of particle size and density on the die fill of powders.
    Mills LA; Sinka IC
    Eur J Pharm Biopharm; 2013 Aug; 84(3):642-52. PubMed ID: 23403013
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Continuous manufacturing of a pharmaceutical cream: Investigating continuous powder dispersing and residence time distribution (RTD).
    Bostijn N; Van Renterghem J; Vanbillemont B; Dhondt W; Vervaet C; De Beer T
    Eur J Pharm Sci; 2019 Apr; 132():106-117. PubMed ID: 30831193
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Continuous powder feeding for pharmaceutical solid dosage form manufacture: a short review.
    Blackshields CA; Crean AM
    Pharm Dev Technol; 2018 Jul; 23(6):554-560. PubMed ID: 28590824
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Characteristics of multi-component formulation granules formed using distributive mixing elements in twin screw granulation.
    Pradhan SU; Sen M; Li J; Gabbott I; Reynolds G; Litster JD; Wassgren CR
    Drug Dev Ind Pharm; 2018 Nov; 44(11):1826-1837. PubMed ID: 30027770
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Content-based image retrieval: a new promising technique in powder technology.
    Laitinen N; Antikainen O; Mannermaa JP; Yliruusi J
    Pharm Dev Technol; 2000; 5(2):171-9. PubMed ID: 10810747
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.