BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 11694019)

  • 1. Development of patches for the controlled release of dehydroepiandrosterone.
    Minghetti P; Cilurzo F; Casiraghi A; Montanari L; Santoro A
    Drug Dev Ind Pharm; 2001 Aug; 27(7):711-7. PubMed ID: 11694019
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Transdermal delivery of nicardipine: an approach to in vitro permeation enhancement.
    Aboofazeli R; Zia H; Needham TE
    Drug Deliv; 2002; 9(4):239-47. PubMed ID: 12511202
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Formulation design and development of matrix diffusion controlled transdermal drug delivery of glimepiride.
    Akram MR; Ahmad M; Abrar A; Sarfraz RM; Mahmood A
    Drug Des Devel Ther; 2018; 12():349-364. PubMed ID: 29503528
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Transdermal delivery of buprenorphine through cadaver skin.
    Roy SD; Roos E; Sharma K
    J Pharm Sci; 1994 Feb; 83(2):126-30. PubMed ID: 8169777
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Skin permeation study of dehydroepiandrosterone (DHEA) compared with its alpha-cyclodextrin complex form.
    Ceschel GC; Mora PC; Lombardi Borgia S; Maffei P; Ronchi C
    J Pharm Sci; 2002 Nov; 91(11):2399-407. PubMed ID: 12379925
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Solubility and transdermal permeation properties of a dehydroepiandrosterone cyclodextrin complex from hydrophilic and lipophilic vehicles.
    Ceschel G; Bergamante V; Maffei P; Lombardi Borgia S; Calabrese V; Biserni S; Ronchi C
    Drug Deliv; 2005; 12(5):275-80. PubMed ID: 16188726
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of adhesives and permeation enhancers on the skin permeation of captopril.
    Park ES; Chang SJ; Rhee YS; Chi SC
    Drug Dev Ind Pharm; 2001 Oct; 27(9):975-80. PubMed ID: 11763476
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Enhanced cutaneous bioavailability of dehydroepiandrosterone mediated by nano-encapsulation.
    Badihi A; Debotton N; Frušić-Zlotkin M; Soroka Y; Neuman R; Benita S
    J Control Release; 2014 Sep; 189():65-71. PubMed ID: 24956487
    [TBL] [Abstract][Full Text] [Related]  

  • 9. PREPARATION, IN VITRO AND IN VIVO CHARACTERIZATION OF HYDROPHOBIC PATCHES OF A HIGHLY WATER SOLUBLE DRUG FOR PROLONGED PLASMA HALF LIFE: EFFECT OF PERMEATION ENHANCERS.
    Yaqoob A; Ahmad M; Mahmood A; Sarfraz RM
    Acta Pol Pharm; 2016 Nov; 73(6):1639-1648. PubMed ID: 29634120
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The effect of formulation excipients on the penetration and lateral diffusion of ibuprofen on and within the stratum corneum following topical application to humans.
    Gee CM; Watkinson AC; Nicolazzo JA; Finnin BC
    J Pharm Sci; 2014 Mar; 103(3):909-19. PubMed ID: 24421242
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Matrix-type transdermal patches of verapamil hydrochloride: in vitro permeation studies through excised rat skin and pharmacodynamic evaluation in rats.
    Güngör S; Bektaş A; Alp FI; Uydeş-Doğan BS; Ozdemir O; Araman A; Ozsoy Y
    Pharm Dev Technol; 2008; 13(4):283-9. PubMed ID: 18649219
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Absorption of transdermally delivered ketorolac acid in humans.
    Roy SD; Manoukian E; Combs D
    J Pharm Sci; 1995 Jan; 84(1):49-52. PubMed ID: 7714743
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nortriptyline for smoking cessation: release and human skin diffusion from patches.
    Melero A; Garrigues TM; Alós M; Kostka KH; Lehr CM; Schaefer UF
    Int J Pharm; 2009 Aug; 378(1-2):101-7. PubMed ID: 19501148
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of polyunsaturated fatty acids and some conventional penetration enhancers on transdermal delivery of atenolol.
    Puglia C; Bonina F
    Drug Deliv; 2008 Feb; 15(2):107-12. PubMed ID: 18293196
    [TBL] [Abstract][Full Text] [Related]  

  • 15. In vitro evaluation of transdermal patches of flurbiprofen with ethyl cellulose.
    Idrees A; Rahman NU; Javaid Z; Kashif M; Aslam I; Abbas K; Hussain T
    Acta Pol Pharm; 2014; 71(2):287-95. PubMed ID: 25272649
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Design, development, physicochemical, and in vitro and in vivo evaluation of transdermal patches containing diclofenac diethylammonium salt.
    Arora P; Mukherjee B
    J Pharm Sci; 2002 Sep; 91(9):2076-89. PubMed ID: 12210054
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Formulation and in vitro evaluation of pentazocine transdermal delivery system.
    Furuishi T; Io T; Fukami T; Suzuki T; Tomono K
    Biol Pharm Bull; 2008 Jul; 31(7):1439-43. PubMed ID: 18591789
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Formulation study of a patch containing propranolol by design of experiments.
    Cilurzo F; Minghetti P; Gennari CG; Casiraghi A; Selmin F; Montanari L
    Drug Dev Ind Pharm; 2014 Jan; 40(1):17-22. PubMed ID: 23301830
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Investigation of the Efficacy of Transdermal Penetration Enhancers Through the Use of Human Skin and a Skin Mimic Artificial Membrane.
    Balázs B; Vizserálek G; Berkó S; Budai-Szűcs M; Kelemen A; Sinkó B; Takács-Novák K; Szabó-Révész P; Csányi E
    J Pharm Sci; 2016 Mar; 105(3):1134-40. PubMed ID: 26886318
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Formulation, in vitro, and in vivo evaluation of matrix-type transdermal patches containing olanzapine.
    Aggarwal G; Dhawan S; Harikumar SL
    Pharm Dev Technol; 2013; 18(4):916-25. PubMed ID: 21913873
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.