BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 11694062)

  • 1. Dioxygen reactivity of laccase: dependence on laccase source, pH, and anion inhibition.
    Xu F
    Appl Biochem Biotechnol; 2001 Aug; 95(2):125-33. PubMed ID: 11694062
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Laccase-catalysed iodide oxidation in presence of methyl syringate.
    Kulys J; Bratkovskaja I; Vidziunaite R
    Biotechnol Bioeng; 2005 Oct; 92(1):124-8. PubMed ID: 16080184
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A study of a series of recombinant fungal laccases and bilirubin oxidase that exhibit significant differences in redox potential, substrate specificity, and stability.
    Xu F; Shin W; Brown SH; Wahleithner JA; Sundaram UM; Solomon EI
    Biochim Biophys Acta; 1996 Feb; 1292(2):303-11. PubMed ID: 8597577
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Site-directed mutations in fungal laccase: effect on redox potential, activity and pH profile.
    Xu F; Berka RM; Wahleithner JA; Nelson BA; Shuster JR; Brown SH; Palmer AE; Solomon EI
    Biochem J; 1998 Aug; 334 ( Pt 1)(Pt 1):63-70. PubMed ID: 9693103
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of redox potential and hydroxide inhibition on the pH activity profile of fungal laccases.
    Xu F
    J Biol Chem; 1997 Jan; 272(2):924-8. PubMed ID: 8995383
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparison of fungal laccases and redox mediators in oxidation of a nonphenolic lignin model compound.
    Li K; Xu F; Eriksson KE
    Appl Environ Microbiol; 1999 Jun; 65(6):2654-60. PubMed ID: 10347057
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structure of the laccase from Coprinus cinereus at 1.68 A resolution: evidence for different 'type 2 Cu-depleted' isoforms.
    Ducros V; Brzozowski AM; Wilson KS; Ostergaard P; Schneider P; Svendson A; Davies GJ
    Acta Crystallogr D Biol Crystallogr; 2001 Feb; 57(Pt 2):333-6. PubMed ID: 11173497
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An assessment of the relative contributions of redox and steric issues to laccase specificity towards putative substrates.
    Tadesse MA; D'Annibale A; Galli C; Gentili P; Sergi F
    Org Biomol Chem; 2008 Mar; 6(5):868-78. PubMed ID: 18292878
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Kinetics and thermodynamics of peroxidase- and laccase-catalyzed oxidation of N-substituted phenothiazines and phenoxazines.
    Kulys J; Krikstopaitis K; Ziemys A
    J Biol Inorg Chem; 2000 Jun; 5(3):333-40. PubMed ID: 10907744
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Crystal structure of a four-copper laccase complexed with an arylamine: insights into substrate recognition and correlation with kinetics.
    Bertrand T; Jolivalt C; Briozzo P; Caminade E; Joly N; Madzak C; Mougin C
    Biochemistry; 2002 Jun; 41(23):7325-33. PubMed ID: 12044164
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Purification, molecular characterization and reactivity with aromatic compounds of a laccase from basidiomycete Trametes sp. strain AH28-2.
    Xiao YZ; Tu XM; Wang J; Zhang M; Cheng Q; Zeng WY; Shi YY
    Appl Microbiol Biotechnol; 2003 Feb; 60(6):700-7. PubMed ID: 12664149
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Molecular characterization of laccase genes from the basidiomycete Coprinus cinereus and heterologous expression of the laccase lcc1.
    Yaver DS; Overjero MD; Xu F; Nelson BA; Brown KM; Halkier T; Bernauer S; Brown SH; Kauppinen S
    Appl Environ Microbiol; 1999 Nov; 65(11):4943-8. PubMed ID: 10543807
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Purification and characterisation of a novel laccase from the ascomycete Melanocarpus albomyces.
    Kiiskinen LL; Viikari L; Kruus K
    Appl Microbiol Biotechnol; 2002 Jul; 59(2-3):198-204. PubMed ID: 12111146
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structural and kinetic characterization of native laccases from Pleurotus ostreatus, Rigidoporus lignosus, and Trametes trogii.
    Garzillo AM; Colao MC; Buonocore V; Oliva R; Falcigno L; Saviano M; Santoro AM; Zappala R; Bonomo RP; Bianco C; Giardina P; Palmieri G; Sannia G
    J Protein Chem; 2001 Apr; 20(3):191-201. PubMed ID: 11565899
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Direct rate assessment of laccase catalysed radical formation in lignin by electron paramagnetic resonance spectroscopy.
    Munk L; Andersen ML; Meyer AS
    Enzyme Microb Technol; 2017 Nov; 106():88-96. PubMed ID: 28859815
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Shifting the optimal pH of activity for a laccase from the fungus Trametes versicolor by structure-based mutagenesis.
    Madzak C; Mimmi MC; Caminade E; Brault A; Baumberger S; Briozzo P; Mougin C; Jolivalt C
    Protein Eng Des Sel; 2006 Feb; 19(2):77-84. PubMed ID: 16368720
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Redox-mediated decolorization of synthetic dyes by fungal laccases.
    Claus H; Faber G; König H
    Appl Microbiol Biotechnol; 2002 Sep; 59(6):672-8. PubMed ID: 12226723
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Redox chemistry in laccase-catalyzed oxidation of N-hydroxy compounds.
    Xu F; Kulys JJ; Duke K; Li K; Krikstopaitis K; Deussen HJ; Abbate E; Galinyte V; Schneider P
    Appl Environ Microbiol; 2000 May; 66(5):2052-6. PubMed ID: 10788380
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Oxidation of polycyclic aromatic hydrocarbons by the bacterial laccase CueO from E. coli.
    Zeng J; Lin X; Zhang J; Li X; Wong MH
    Appl Microbiol Biotechnol; 2011 Mar; 89(6):1841-9. PubMed ID: 21120471
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cloning of an acidic laccase gene (clac2) from Coprinus congregatus and its expression by external pH.
    Kim S; Leem Y; Kim K; Choi HT
    FEMS Microbiol Lett; 2001 Feb; 195(2):151-6. PubMed ID: 11179644
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.