These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 11694285)

  • 21. Protein purification using immobilised triazine dyes.
    Dean PD; Watson DH
    J Chromatogr; 1979 Oct; 165(3):301-19. PubMed ID: 395164
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Evaluation of a novel agarose-based synthetic ligand adsorbent for the recovery of antibodies from ovine serum.
    Chhatre S; Francis R; Titchener-Hooker NJ; Newcombe AR; Keshavarz-Moore E
    J Chromatogr B Analyt Technol Biomed Life Sci; 2007 Dec; 860(2):209-17. PubMed ID: 18024245
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Capture of a monoclonal antibody and prediction of separation conditions using a synthetic multimodal ligand attached on chips and beads.
    Brenac V; Ravault V; Santambien P; Boschetti E
    J Chromatogr B Analyt Technol Biomed Life Sci; 2005 Apr; 818(1):61-6. PubMed ID: 15722045
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Characterization of poly(allylamine) as a polymeric ligand for ion-exchange protein chromatography.
    Li M; Li Y; Yu L; Sun Y
    J Chromatogr A; 2017 Feb; 1486():103-109. PubMed ID: 27852454
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Protein purification via aqueous two-phase extraction (ATPE) and immobilized metal affinity chromatography. Effectiveness of salt addition to enhance selectivity and yield of GFPuv.
    Li Y; Beitle RR
    Biotechnol Prog; 2002; 18(5):1054-9. PubMed ID: 12363357
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Retention and selectivity effects caused by bonding of a polar urea-type ligand to silica: a study on mixed-mode retention mechanisms and the pivotal role of solute-silanol interactions in the hydrophilic interaction chromatography elution mode.
    Bicker W; Wu J; Yeman H; Albert K; Lindner W
    J Chromatogr A; 2011 Feb; 1218(7):882-95. PubMed ID: 21067765
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Affinity chromatography of macromolecules.
    Cuatrecasas P
    Adv Enzymol Relat Areas Mol Biol; 1972; 36():29-89. PubMed ID: 4561014
    [No Abstract]   [Full Text] [Related]  

  • 28. Temperature dependence of antibody adsorption in protein A affinity chromatography.
    Krepper W; Satzer P; Beyer BM; Jungbauer A
    J Chromatogr A; 2018 May; 1551():59-68. PubMed ID: 29625770
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Thermodynamics of the adsorption of monoclonal antibodies in phenylboronate chromatography: Affinity versus multimodal interactions.
    Rosa SASL; da Silva CL; Aires-Barros MR; Dias-Cabral AC; Azevedo AM
    J Chromatogr A; 2018 Sep; 1569():118-127. PubMed ID: 30033171
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The applications of reactive dyes in enzyme and protein downstream processing.
    Clonis YD
    Crit Rev Biotechnol; 1988; 7(4):263-79. PubMed ID: 3064922
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Affinity purification of proteins using expanded beds.
    Chase HA; Draeger NM
    J Chromatogr; 1992 Apr; 597(1-2):129-45. PubMed ID: 1387651
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A synthetic ligand for IgA affinity purification.
    Palombo G; De Falco S; Tortora M; Cassani G; Fassina G
    J Mol Recognit; 1998; 11(1-6):243-6. PubMed ID: 10076848
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Elution relationships to model affinity chromatography using a general rate model.
    Sandoval G; Andrews BA; Asenjo JA
    J Mol Recognit; 2012 Nov; 25(11):571-9. PubMed ID: 23108617
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Biomimetic dyes as affinity chromatography tools in enzyme purification.
    Clonis YD; Labrou NE; Kotsira VP; Mazitsos C; Melissis S; Gogolas G
    J Chromatogr A; 2000 Sep; 891(1):33-44. PubMed ID: 10999623
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Protein recognition of immobilized ligands: promotion of selective adsorption.
    Hutchens TW; Porath JO
    Clin Chem; 1987 Sep; 33(9):1502-8. PubMed ID: 3621554
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Dual-ligand affinity systems with octapeptide ligands for affinity chromatography of hIgG and monoclonal antibody.
    Zhao WW; Shi QH; Sun Y
    J Chromatogr A; 2014 Nov; 1369():64-72. PubMed ID: 25441072
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Essential role of the concentration of immobilized ligands in affinity chromatography: purification of guanidinobenzoatase on an ionized ligand.
    Murza A; Fernández-Lafuente R; Guisán JM
    J Chromatogr B Biomed Sci Appl; 2000 Apr; 740(2):211-8. PubMed ID: 10821407
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Salt-independent hydrophobic displacement chromatography for antibody purification using cyclodextrin as supermolecular displacer.
    Ren J; Yao P; Chen J; Jia L
    J Chromatogr A; 2014 Nov; 1369():98-104. PubMed ID: 25441076
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A model for the salt effect on adsorption equilibrium of basic protein to dye-ligand affinity adsorbent.
    Zhang S; Sun Y
    Biotechnol Prog; 2004; 20(1):207-14. PubMed ID: 14763844
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Use of protein-protein interactions in affinity chromatography.
    Muronetz VI; Sholukh M; Korpela T
    J Biochem Biophys Methods; 2001 Oct; 49(1-3):29-47. PubMed ID: 11694271
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.