BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

714 related articles for article (PubMed ID: 11694592)

  • 1. N-terminal protein acylation confers localization to cholesterol, sphingolipid-enriched membranes but not to lipid rafts/caveolae.
    McCabe JB; Berthiaume LG
    Mol Biol Cell; 2001 Nov; 12(11):3601-17. PubMed ID: 11694592
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The dually acylated NH2-terminal domain of gi1alpha is sufficient to target a green fluorescent protein reporter to caveolin-enriched plasma membrane domains. Palmitoylation of caveolin-1 is required for the recognition of dually acylated g-protein alpha subunits in vivo.
    Galbiati F; Volonte D; Meani D; Milligan G; Lublin DM; Lisanti MP; Parenti M
    J Biol Chem; 1999 Feb; 274(9):5843-50. PubMed ID: 10026207
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Functional roles for fatty acylated amino-terminal domains in subcellular localization.
    McCabe JB; Berthiaume LG
    Mol Biol Cell; 1999 Nov; 10(11):3771-86. PubMed ID: 10564270
    [TBL] [Abstract][Full Text] [Related]  

  • 4. P-Glycoprotein is localized in intermediate-density membrane microdomains distinct from classical lipid rafts and caveolar domains.
    Radeva G; Perabo J; Sharom FJ
    FEBS J; 2005 Oct; 272(19):4924-37. PubMed ID: 16176266
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The residue at position 5 of the N-terminal region of Src and Fyn modulates their myristoylation, palmitoylation, and membrane interactions.
    Gottlieb-Abraham E; Gutman O; Pai GM; Rubio I; Henis YI
    Mol Biol Cell; 2016 Dec; 27(24):3926-3936. PubMed ID: 27733622
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of cholesterol depletion by cyclodextrin on the sphingolipid microdomains of the plasma membrane.
    Ilangumaran S; Hoessli DC
    Biochem J; 1998 Oct; 335 ( Pt 2)(Pt 2):433-40. PubMed ID: 9761744
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Partitioning of lipid-modified monomeric GFPs into membrane microdomains of live cells.
    Zacharias DA; Violin JD; Newton AC; Tsien RY
    Science; 2002 May; 296(5569):913-6. PubMed ID: 11988576
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Distance-dependent cellular palmitoylation of de-novo-designed sequences and their translocation to plasma membrane subdomains.
    Navarro-Lérida I; Alvarez-Barrientos A; Gavilanes F; Rodriguez-Crespo I
    J Cell Sci; 2002 Aug; 115(Pt 15):3119-30. PubMed ID: 12118067
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The sonic hedgehog receptor patched associates with caveolin-1 in cholesterol-rich microdomains of the plasma membrane.
    Karpen HE; Bukowski JT; Hughes T; Gratton JP; Sessa WC; Gailani MR
    J Biol Chem; 2001 Jun; 276(22):19503-11. PubMed ID: 11278759
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Signal transducing molecules and glycosyl-phosphatidylinositol-linked proteins form a caveolin-rich insoluble complex in MDCK cells.
    Sargiacomo M; Sudol M; Tang Z; Lisanti MP
    J Cell Biol; 1993 Aug; 122(4):789-807. PubMed ID: 8349730
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Isolation and characterization of lipid rafts with different properties from RBL-2H3 (rat basophilic leukaemia) cells.
    Radeva G; Sharom FJ
    Biochem J; 2004 May; 380(Pt 1):219-30. PubMed ID: 14769131
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Two types of detergent-insoluble, glycosphingolipid/cholesterol-rich membrane domains from isolated myelin.
    Arvanitis DN; Min W; Gong Y; Heng YM; Boggs JM
    J Neurochem; 2005 Sep; 94(6):1696-710. PubMed ID: 16045452
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Methods for the study of signaling molecules in membrane lipid rafts and caveolae.
    Ostrom RS; Insel PA
    Methods Mol Biol; 2006; 332():181-91. PubMed ID: 16878693
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Co-purification and direct interaction of Ras with caveolin, an integral membrane protein of caveolae microdomains. Detergent-free purification of caveolae microdomains.
    Song KS; Li Shengwen ; Okamoto T; Quilliam LA; Sargiacomo M; Lisanti MP
    J Biol Chem; 1996 Apr; 271(16):9690-7. PubMed ID: 8621645
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Targeting of a G alpha subunit (Gi1 alpha) and c-Src tyrosine kinase to caveolae membranes: clarifying the role of N-myristoylation.
    Song KS; Sargiacomo M; Galbiati F; Parenti M; Lisanti MP
    Cell Mol Biol (Noisy-le-grand); 1997 May; 43(3):293-303. PubMed ID: 9193783
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Isolation of Lipid Rafts (Detergent-Resistant Microdomains) and Comparison to Extracellular Vesicles (Exosomes).
    Dawson G
    Methods Mol Biol; 2021; 2187():99-112. PubMed ID: 32770503
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Detergent-insoluble glycosphingolipid/cholesterol-rich membrane domains, lipid rafts and caveolae (review).
    Hooper NM
    Mol Membr Biol; 1999; 16(2):145-56. PubMed ID: 10417979
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structure-function analysis of Lyn kinase association with lipid rafts and initiation of early signaling events after Fcepsilon receptor I aggregation.
    Kovárová M; Tolar P; Arudchandran R; Dráberová L; Rivera J; Dráber P
    Mol Cell Biol; 2001 Dec; 21(24):8318-28. PubMed ID: 11713268
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Sphingolipid-cholesterol domains (lipid rafts) in normal human and dog thyroid follicular cells are not involved in thyrotropin receptor signaling.
    Costa MJ; Song Y; Macours P; Massart C; Many MC; Costagliola S; Dumont JE; Van Sande J; Vanvooren V
    Endocrinology; 2004 Mar; 145(3):1464-72. PubMed ID: 14670987
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Compositional changes in lipid microdomains of air-blood barrier plasma membranes in pulmonary interstitial edema.
    Palestini P; Calvi C; Conforti E; Daffara R; Botto L; Miserocchi G
    J Appl Physiol (1985); 2003 Oct; 95(4):1446-52. PubMed ID: 12794031
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 36.