BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

177 related articles for article (PubMed ID: 11695182)

  • 21. CRISPR-mediated gene knockout reveals nicotinic acetylcholine receptor (nAChR) subunit α6 as a target of spinosyns in Helicoverpa armigera.
    Wang J; Ma H; Zuo Y; Yang Y; Wu Y
    Pest Manag Sci; 2020 Sep; 76(9):2925-2931. PubMed ID: 32384223
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Inhibiting the proteasome reduces molecular and biological impacts of the natural product insecticide, spinosad.
    Nguyen J; Ghazali R; Batterham P; Perry T
    Pest Manag Sci; 2021 Aug; 77(8):3777-3786. PubMed ID: 33481333
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Isomer selectivity in aquatic toxicity and biodegradation of bifenthrin and permethrin.
    Liu W; Gan J; Lee S; Werner I
    Environ Toxicol Chem; 2005 Aug; 24(8):1861-6. PubMed ID: 16152954
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The synaptosomal membrane bound ATPase as a target for the neurotoxic effects of pyrethroids, permethrin and cypermethrin.
    Kakko I; Toimela T; Tähti H
    Chemosphere; 2003 May; 51(6):475-80. PubMed ID: 12615099
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Activity of spinosad on stored-tobacco insects and persistence on cured tobacco stripst.
    Blanc MP; Panighini C; Gadani F; Rossi L
    Pest Manag Sci; 2004 Nov; 60(11):1091-8. PubMed ID: 15532683
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Toxicity of new pyrethroid in pest insects Asciamonuste and Diaphania hyalinata, predator Solenopsis saevissima and stingless bee Tetragonisca angustula.
    Moreno SC; Silvério FO; Lopes MC; Ramos RS; Alvarenga ES; Picanço MC
    J Environ Sci Health B; 2017 Apr; 52(4):237-243. PubMed ID: 28095121
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Modification of the butenyl-spinosyns utilizing cross-metathesis.
    Daeuble J; Sparks TC; Johnson P; Graupner PR
    Bioorg Med Chem; 2009 Jun; 17(12):4197-205. PubMed ID: 19303781
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Comparative functional observational battery study of twelve commercial pyrethroid insecticides in male rats following acute oral exposure.
    Weiner ML; Nemec M; Sheets L; Sargent D; Breckenridge C
    Neurotoxicology; 2009 Nov; 30 Suppl 1():S1-16. PubMed ID: 19748519
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The efficacy of spinosad against the western flower thrips, Frankliniella occidentalis, and its impact on associated biological control agents on greenhouse cucumbers in southern Ontario.
    Jones T; Scott-Dupree C; Harris R; Shipp L; Harris B
    Pest Manag Sci; 2005 Feb; 61(2):179-85. PubMed ID: 15619719
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Environmentally relevant mixtures in cumulative assessments: an acute study of toxicokinetics and effects on motor activity in rats exposed to a mixture of pyrethroids.
    Starr JM; Scollon EJ; Hughes MF; Ross DG; Graham SE; Crofton KM; Wolansky MJ; Devito MJ; Tornero-Velez R
    Toxicol Sci; 2012 Dec; 130(2):309-18. PubMed ID: 22872056
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Integrated pest management approach for a new pest, Lacanobia subjuncta (Lepidoptera: Noctuidae), in Washington apple orchards.
    Doerr MD; Brunner JF; Schrader LE
    Pest Manag Sci; 2004 Oct; 60(10):1025-34. PubMed ID: 15481830
    [TBL] [Abstract][Full Text] [Related]  

  • 32. An ecological risk assessment for spinosad use on cotton.
    Cleveland CB; Mayes MA; Cryer SA
    Pest Manag Sci; 2002 Jan; 58(1):70-84. PubMed ID: 11838288
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Environmentally relevant mixing ratios in cumulative assessments: a study of the kinetics of pyrethroids and their ester cleavage metabolites in blood and brain; and the effect of a pyrethroid mixture on the motor activity of rats.
    Starr JM; Graham SE; Ross DG; Tornero-Velez R; Scollon EJ; Devito MJ; Crofton KM; Wolansky MJ; Hughes MF
    Toxicology; 2014 Jun; 320():15-24. PubMed ID: 24631210
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Efficacy of some plant oils alone and/or combined with different insecticides on the cotton leaf-worm Spodoptera littoralis (Boisd.) (Lepidoptera: Noctuidae) in Egypt.
    Mesbah HA; Mourad AK; Rokaia AZ
    Commun Agric Appl Biol Sci; 2006; 71(2 Pt B):305-28. PubMed ID: 17385497
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Natural product derived insecticides: discovery and development of spinetoram.
    Galm U; Sparks TC
    J Ind Microbiol Biotechnol; 2016 Mar; 43(2-3):185-93. PubMed ID: 26582335
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Effects of Two Conventional Insecticides on Male-Specific Sex Pheromone Discrimination and Mate Choice in Trichogramma chilonis (Hymenoptera: Trichogrammatidae).
    Wang D; Lü L; He Y
    Environ Entomol; 2017 Apr; 46(2):328-334. PubMed ID: 28169400
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Discovery and development of pyrethroid insecticides.
    Matsuo N
    Proc Jpn Acad Ser B Phys Biol Sci; 2019; 95(7):378-400. PubMed ID: 31406060
    [TBL] [Abstract][Full Text] [Related]  

  • 38. [Comparative analysis of degradation of native avermectins and spinosyns by UV-HPLC].
    Viktorov AV; Pleshkov EN; Driniaev VA
    Antibiot Khimioter; 2002; 47(12):6-10. PubMed ID: 12728628
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Neurobehavioral toxicology of pyrethroid insecticides in adult animals: a critical review.
    Wolansky MJ; Harrill JA
    Neurotoxicol Teratol; 2008; 30(2):55-78. PubMed ID: 18206347
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Development of pyrethroid substrates for esterases associated with pyrethroid resistance in the tobacco budworm, Heliothis virescens (F.).
    Huang H; Ottea JA
    J Agric Food Chem; 2004 Oct; 52(21):6539-45. PubMed ID: 15479020
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.