These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 11695470)

  • 1. A comparison of prototype compound parabolic collector-reactors (CPC) on the road to SOLARDETOX technology.
    Funken KH; Sattler C; Milow B; De Oliveira L; Blanco J; Fernández P; Malato S; Brunott M; Dischinge N; Tratzky S; Musci M; de Oliveira JC
    Water Sci Technol; 2001; 44(5):271-8. PubMed ID: 11695470
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Treatment of chlorinated solvents by TiO2 photocatalysis and photo-Fenton: influence of operating conditions in a solar pilot plant.
    Rodríguez SM; Gálvez JB; Rubio MI; Ibáñez PF; Gernjak W; Alberola IO
    Chemosphere; 2005 Jan; 58(4):391-8. PubMed ID: 15620730
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Concentrating versus non-concentrating reactors for solar photocatalytic degradation of p-nitrotoluene-o-sulfonic acid.
    Parra S; Malato S; Blanco J; Péringer P; Pulgari C
    Water Sci Technol; 2001; 44(5):219-27. PubMed ID: 11695462
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparison of suspended and fixed photocatalytic reactor systems.
    Geissen SU; Xi W; Weidemeyer A; Vogelpohl A; Bousselmi L; Ghrab A; Nnabi AE
    Water Sci Technol; 2001; 44(5):245-9. PubMed ID: 11695466
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Photocatalytic oxidation technology for humic acid removal using a nano-structured TiO2/Fe2O3 catalyst.
    Qiao S; Sun DD; Tay JH; Easton C
    Water Sci Technol; 2003; 47(1):211-7. PubMed ID: 12578197
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Performance of photocatalytic reactors using immobilized TiO2 film for the degradation of phenol and methylene blue dye present in water stream.
    Ling CM; Mohamed AR; Bhatia S
    Chemosphere; 2004 Nov; 57(7):547-54. PubMed ID: 15488916
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Photochemical treatment of simulated dyehouse effluents by novel TiO2 photocatalysts: experience with the thin film fixed bed (TFFB) and double skin sheet (DSS) reactor.
    Arslan I; Balcioglu IA; Bahneman DW
    Water Sci Technol; 2001; 44(5):171-8. PubMed ID: 11695456
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Photocatalytic degradation of dye effluent by titanium dioxide pillar pellets in aqueous solution.
    Li YC; Zou LD; Hu E
    J Environ Sci (China); 2004; 16(3):375-9. PubMed ID: 15272706
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Photocatalytic oxidation of gaseous DMF using thin film TiO2 photocatalyst.
    Chang CP; Chen JN; Lu MC; Yang HY
    Chemosphere; 2005 Feb; 58(8):1071-8. PubMed ID: 15664614
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Development of photocatalytic TiO2 nanofibers by electrospinning and its application to degradation of dye pollutants.
    Doh SJ; Kim C; Lee SG; Lee SJ; Kim H
    J Hazard Mater; 2008 Jun; 154(1-3):118-27. PubMed ID: 18006150
    [TBL] [Abstract][Full Text] [Related]  

  • 11. New large solar photocatalytic plant: set-up and preliminary results.
    Malato S; Blanco J; Vidal A; Fernández P; Cáceres J; Trincado P; Oliveira JC; Vincent M
    Chemosphere; 2002 Apr; 47(3):235-40. PubMed ID: 11996143
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Preparation of visible light active S-doped TiO2 photocatalysts and their photocatalytic activities.
    Ohno T
    Water Sci Technol; 2004; 49(4):159-63. PubMed ID: 15077965
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Removal of natural organic matter from water using a nano-structured photocatalyst coupled with filtration membrane.
    Sun D; Meng TT; Loong TH; Hwa TJ
    Water Sci Technol; 2004; 49(1):103-10. PubMed ID: 14979544
    [TBL] [Abstract][Full Text] [Related]  

  • 14. TiO2/beads as a photocatalyst for the degradation of X3B azo dye.
    Chen SF; Cao GY
    J Environ Sci (China); 2003 Jan; 15(1):83-7. PubMed ID: 12602608
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Solar photocatalytic disinfection with immobilised TiO(2) at pilot-plant scale.
    Sordo C; Van Grieken R; Marugán J; Fernández-Ibáñez P
    Water Sci Technol; 2010; 61(2):507-12. PubMed ID: 20107278
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Photocatalytic mineralization of commercial herbicides in a pilot-scale solar CPC reactor: photoreactor modeling and reaction kinetics constants independent of radiation field.
    Colina-Márquez J; Machuca-Martínez F; Li Puma G
    Environ Sci Technol; 2009 Dec; 43(23):8953-60. PubMed ID: 19943672
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Macro kinetic studies for photocatalytic degradation of benzoic acid in immobilized systems.
    Mehrotra K; Yablonsky GS; Ray AK
    Chemosphere; 2005 Sep; 60(10):1427-36. PubMed ID: 16054912
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Solar detoxification of wastewater in a novel aerated cascade photoreactor (ACP).
    Xi W; Geissen SU; Vogelpohl A
    Water Sci Technol; 2001; 44(5):237-44. PubMed ID: 11695465
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Degradation of 1,4-dioxane in water using TiO2 based photocatalytic and H2O2/UV processes.
    Coleman HM; Vimonses V; Leslie G; Amal R
    J Hazard Mater; 2007 Jul; 146(3):496-501. PubMed ID: 17574739
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Removal of bromate ion from water using TiO2 and alumina-loaded TiO2 photocatalysts.
    Noguchi H; Nakajima A; Watanabe T; Hashimoto K
    Water Sci Technol; 2002; 46(11-12):27-31. PubMed ID: 12523728
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.