BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

349 related articles for article (PubMed ID: 11695556)

  • 41. Assessment of human cancer risk: challenges for alternative approaches.
    Omenn GS
    Toxicol Pathol; 2001; 29 Suppl():5-12. PubMed ID: 11695561
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Evaluation and validation issues in the development of transgenic mouse carcinogenicity bioassays.
    Tennant RW
    Environ Health Perspect; 1998 Apr; 106 Suppl 2(Suppl 2):473-6. PubMed ID: 9599694
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Responses of transgenic mouse lines p53(+/-) and Tg.AC to agents tested in conventional carcinogenicity bioassays.
    Spalding JW; French JE; Stasiewicz S; Furedi-Machacek M; Conner F; Tice RR; Tennant RW
    Toxicol Sci; 2000 Feb; 53(2):213-23. PubMed ID: 10696769
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Identifying chemical carcinogens and assessing potential risk in short-term bioassays using transgenic mouse models.
    Tennant RW; French JE; Spalding JW
    Environ Health Perspect; 1995 Oct; 103(10):942-50. PubMed ID: 8529591
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Selection of drugs to test the specificity of the Tg.AC assay by screening for induction of the gadd153 promoter in vitro.
    Thompson KL; Sistare FD
    Toxicol Sci; 2003 Aug; 74(2):260-70. PubMed ID: 12730611
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Alternatives to the 2-species bioassay for the identification of potential human carcinogens.
    Ashby J
    Hum Exp Toxicol; 1996 Mar; 15(3):183-202. PubMed ID: 8839204
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Evaluation of the Tg.AC transgenic mouse assay for testing the human carcinogenic potential of pharmaceuticals--practical pointers, mechanistic clues, and new questions.
    Sistare FD; Thompson KL; Honchel R; DeGeorge J
    Int J Toxicol; 2002; 21(1):65-79. PubMed ID: 11936901
    [TBL] [Abstract][Full Text] [Related]  

  • 48. A data-based assessment of alternative strategies for identification of potential human cancer hazards.
    Boobis AR; Cohen SM; Doerrer NG; Galloway SM; Haley PJ; Hard GC; Hess FG; Macdonald JS; Thibault S; Wolf DC; Wright J
    Toxicol Pathol; 2009 Oct; 37(6):714-32. PubMed ID: 19700658
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Comparison of the levels of enzymes involved in drug metabolism between transgenic or gene-knockout and the parental mice.
    Ariyoshi N; Imaoka S; Nakayama K; Takahashi Y; Fujita K; Funae Y; Kamataki T
    Toxicol Pathol; 2001; 29 Suppl():161-72. PubMed ID: 11695553
    [TBL] [Abstract][Full Text] [Related]  

  • 50. The National Toxicology Program evaluation of genetically altered mice as predictive models for identifying carcinogens.
    Eastin WC; Haseman JK; Mahler JF; Bucher JR
    Toxicol Pathol; 1998; 26(4):461-73. PubMed ID: 9715504
    [TBL] [Abstract][Full Text] [Related]  

  • 51. The potential of genetically altered mice as animal models for carcinogen identification.
    Maronpot RR
    Toxicol Pathol; 1998; 26(4):579-81. PubMed ID: 9715518
    [No Abstract]   [Full Text] [Related]  

  • 52. Evaluation of the utility of the lifetime mouse bioassay in the identification of cancer hazards for humans.
    Osimitz TG; Droege W; Boobis AR; Lake BG
    Food Chem Toxicol; 2013 Oct; 60():550-62. PubMed ID: 23954551
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Validation of transgenic mice carrying the human prototype c-Ha-ras gene as a bioassay model for rapid carcinogenicity testing.
    Yamamoto S; Urano K; Koizumi H; Wakana S; Hioki K; Mitsumori K; Kurokawa Y; Hayashi Y; Nomura T
    Environ Health Perspect; 1998 Feb; 106 Suppl 1(Suppl 1):57-69. PubMed ID: 9539005
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Evaluation on carcinogenicity of chemicals using transgenic mice.
    Mitsumori K
    Toxicology; 2002 Dec; 181-182():241-4. PubMed ID: 12505318
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Transgenic mouse models for the identification of human carcinogens: a European perspective.
    van Kreijl CF; van Steeg H
    Toxicol Pathol; 1998; 26(6):757-8. PubMed ID: 9864092
    [No Abstract]   [Full Text] [Related]  

  • 56. Twenty-six-Week carcinogenicity study of chloroform in CB6F1 rasH2-transgenic mice.
    Sehata S; Maejima T; Watanabe M; Ogata S; Makino T; Tanaka K; Manabe S; Takaoka M
    Toxicol Pathol; 2002; 30(3):328-38. PubMed ID: 12051550
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Development of a transgenic mouse model for carcinogenesis bioassays: evaluation of chemically induced skin tumors in Tg.AC mice.
    Spalding JW; French JE; Tice RR; Furedi-Machacek M; Haseman JK; Tennant RW
    Toxicol Sci; 1999 Jun; 49(2):241-54. PubMed ID: 10416269
    [TBL] [Abstract][Full Text] [Related]  

  • 58. In Vitro-In Vivo Carcinogenicity.
    Steinberg P
    Adv Biochem Eng Biotechnol; 2017; 157():81-96. PubMed ID: 27506831
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Medium-term bioassays in rats for rapid detection of the carcinogenic potential of chemicals.
    Shirai T; Hirose M; Ito N
    IARC Sci Publ; 1999; (146):251-72. PubMed ID: 10353390
    [No Abstract]   [Full Text] [Related]  

  • 60. Hydroquinone: an evaluation of the human risks from its carcinogenic and mutagenic properties.
    McGregor D
    Crit Rev Toxicol; 2007; 37(10):887-914. PubMed ID: 18027166
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 18.