These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

99 related articles for article (PubMed ID: 11695585)

  • 1. Assessing the aerobic biodegradability of 14 hydrocarbons in two soils using a simple microcosm/respiration method.
    Miles RA; Doucette WJ
    Chemosphere; 2001 Nov; 45(6-7):1085-90. PubMed ID: 11695585
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Bioremediation of a soil contaminated by hydrocarbon mixtures: the residual concentration problem.
    Nocentini M; Pinelli D; Fava F
    Chemosphere; 2000 Oct; 41(8):1115-23. PubMed ID: 10901236
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evaluation of the intrinsic methyl tert-butyl ether (MTBE) biodegradation potential of hydrocarbon contaminated subsurface soils in batch microcosm systems.
    Moreels D; Bastiaens L; Ollevier F; Merckx R; Diels L; Springael D
    FEMS Microbiol Ecol; 2004 Jul; 49(1):121-8. PubMed ID: 19712389
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Influence of hydroxypropyl-beta-cyclodextrin on the biodegradation of 14C-phenanthrene and 14C-hexadecane in soil.
    Stroud JL; Tzima M; Paton GI; Semple KT
    Environ Pollut; 2009 Oct; 157(10):2678-83. PubMed ID: 19501437
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Assessing impediments to hydrocarbon biodegradation in weathered contaminated soils.
    Adetutu E; Weber J; Aleer S; Dandie CE; Aburto-Medina A; Ball AS; Juhasz AL
    J Hazard Mater; 2013 Oct; 261():847-53. PubMed ID: 23454918
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Aerobic biotransformation of octylphenol polyethoxylate surfactant in soil microcosms.
    Chen HJ; Huang SL; Tseng DH
    Environ Technol; 2004 Feb; 25(2):201-10. PubMed ID: 15116878
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of digestate application on microbial respiration and bacterial communities' diversity during bioremediation of weathered petroleum hydrocarbons contaminated soils.
    Gielnik A; Pechaud Y; Huguenot D; Cébron A; Riom JM; Guibaud G; Esposito G; van Hullebusch ED
    Sci Total Environ; 2019 Jun; 670():271-281. PubMed ID: 30903900
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Bioavailability and degradation of phenanthrene in compost amended soils.
    Puglisi E; Cappa F; Fragoulis G; Trevisan M; Del Re AA
    Chemosphere; 2007 Mar; 67(3):548-56. PubMed ID: 17125813
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Bioremediation of diesel and lubricant oil-contaminated soils using enhanced landfarming system.
    Wang SY; Kuo YC; Hong A; Chang YM; Kao CM
    Chemosphere; 2016 Dec; 164():558-567. PubMed ID: 27627466
    [TBL] [Abstract][Full Text] [Related]  

  • 10. More functional genes and convergent overall functional patterns detected by GEOCHIP in phenanthrene-spiked soils.
    Ding GC; Heuer H; He Z; Xie J; Zhou J; Smalla K
    FEMS Microbiol Ecol; 2012 Oct; 82(1):148-56. PubMed ID: 22587620
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Biodegradation of hydrocarbons vapors: Comparison of laboratory studies and field investigations in the vadose zone at the emplaced fuel source experiment, Airbase Vaerløse, Denmark.
    Höhener P; Dakhel N; Christophersen M; Broholm M; Kjeldsen P
    J Contam Hydrol; 2006 Dec; 88(3-4):337-58. PubMed ID: 16963155
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Terrestrial microcosms in a feasibility study on the remediation of diesel-contaminated soils.
    Fernández MD; Pro J; Alonso C; Aragonese P; Tarazona JV
    Ecotoxicol Environ Saf; 2011 Nov; 74(8):2133-40. PubMed ID: 21907410
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of sorption and desorption resistance on aerobic trichloroethylene biodegradation in soils.
    Lee S; Moe WM; Valsaraj KT; Pardue JH
    Environ Toxicol Chem; 2002 Aug; 21(8):1609-17. PubMed ID: 12152760
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A model for the effect of rhizodeposition on the fate of phenanthrene in aged contaminated soil.
    Kamath R; Schnoor JL; Alvarez PJ
    Environ Sci Technol; 2005 Dec; 39(24):9669-75. PubMed ID: 16475350
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Development of phenanthrene catabolism in natural and artificial soils.
    Rhodes AH; Hofman J; Semple KT
    Environ Pollut; 2008 Mar; 152(2):424-30. PubMed ID: 17881102
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Assessment of five bioaccessibility assays for predicting the efficacy of petroleum hydrocarbon biodegradation in aged contaminated soils.
    Dandie CE; Weber J; Aleer S; Adetutu EM; Ball AS; Juhasz AL
    Chemosphere; 2010 Nov; 81(9):1061-8. PubMed ID: 20947131
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fate and behaviour of phenanthrene in the natural and artificial soils.
    Hofman J; Rhodes A; Semple KT
    Environ Pollut; 2008 Mar; 152(2):468-75. PubMed ID: 17850942
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The abundance of nahAc genes correlates with the 14C-naphthalene mineralization potential in petroleum hydrocarbon-contaminated oxic soil layers.
    Tuomi PM; Salminen JM; Jørgensen KS
    FEMS Microbiol Ecol; 2004 Dec; 51(1):99-107. PubMed ID: 16329859
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Impact of activated charcoal on the mineralisation of 14C-phenanthrene in soils.
    Rhodes AH; McAllister LE; Chen R; Semple KT
    Chemosphere; 2010 Apr; 79(4):463-9. PubMed ID: 20171713
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A note on the use of the CEC L-33-A-93 test to predict the potential biodegradation of mineral oil based lubricants in soil.
    Battersby NS; Morgan P
    Chemosphere; 1997 Oct; 35(8):1773-9. PubMed ID: 9353906
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.