BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 11695910)

  • 21. UV endonuclease of Micrococcus luteus, a cyclobutane pyrimidine dimer-DNA glycosylase/abasic lyase: cloning and characterization of the gene.
    Shiota S; Nakayama H
    Proc Natl Acad Sci U S A; 1997 Jan; 94(2):593-8. PubMed ID: 9012829
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The use of thioglycollate to demonstrate DNA AP (apurinic/apyrimidinic-site) lyase activities. Biological consequences of thiol addition to the 5' product of a beta-elimination reaction at an AP site in DNA.
    Bricteux-Grégoire S; Verly WG
    Biochem J; 1991 Feb; 273 ( Pt 3)(Pt 3):777-82. PubMed ID: 1705116
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The Ogg1 protein of Saccharomyces cerevisiae: a 7,8-dihydro-8-oxoguanine DNA glycosylase/AP lyase whose lysine 241 is a critical residue for catalytic activity.
    Girard PM; Guibourt N; Boiteux S
    Nucleic Acids Res; 1997 Aug; 25(16):3204-11. PubMed ID: 9241232
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Role of the N-terminal proline residue in the catalytic activities of the Escherichia coli Fpg protein.
    Sidorkina OM; Laval J
    J Biol Chem; 2000 Apr; 275(14):9924-9. PubMed ID: 10744666
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Role of specific amino acid residues in T4 endonuclease V that alter nontarget DNA binding.
    Nyaga SG; Dodson ML; Lloyd RS
    Biochemistry; 1997 Apr; 36(14):4080-8. PubMed ID: 9100001
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Base excision of oxidative purine and pyrimidine DNA damage in Saccharomyces cerevisiae by a DNA glycosylase with sequence similarity to endonuclease III from Escherichia coli.
    Eide L; Bjørås M; Pirovano M; Alseth I; Berdal KG; Seeberg E
    Proc Natl Acad Sci U S A; 1996 Oct; 93(20):10735-40. PubMed ID: 8855249
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Studies on the catalytic mechanism of five DNA glycosylases. Probing for enzyme-DNA imino intermediates.
    Sun B; Latham KA; Dodson ML; Lloyd RS
    J Biol Chem; 1995 Aug; 270(33):19501-8. PubMed ID: 7642635
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A single engineered point mutation in the adenine glycosylase MutY confers bifunctional glycosylase/AP lyase activity.
    Williams SD; David SS
    Biochemistry; 2000 Aug; 39(33):10098-109. PubMed ID: 10955998
    [TBL] [Abstract][Full Text] [Related]  

  • 29. NH2-terminal proline acts as a nucleophile in the glycosylase/AP-lyase reaction catalyzed by Escherichia coli formamidopyrimidine-DNA glycosylase (Fpg) protein.
    Zharkov DO; Rieger RA; Iden CR; Grollman AP
    J Biol Chem; 1997 Feb; 272(8):5335-41. PubMed ID: 9030608
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Escherichia coli endonuclease III is not an endonuclease but a beta-elimination catalyst.
    Bailly V; Verly WG
    Biochem J; 1987 Mar; 242(2):565-72. PubMed ID: 2439070
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Role of lysine-57 in the catalytic activities of Escherichia coli formamidopyrimidine-DNA glycosylase (Fpg protein).
    Sidorkina OM; Laval J
    Nucleic Acids Res; 1998 Dec; 26(23):5351-7. PubMed ID: 9826758
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The critical active-site amine of the human 8-oxoguanine DNA glycosylase, hOgg1: direct identification, ablation and chemical reconstitution.
    Nash HM; Lu R; Lane WS; Verdine GL
    Chem Biol; 1997 Sep; 4(9):693-702. PubMed ID: 9331411
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Cloning and characterization of a functional human homolog of Escherichia coli endonuclease III.
    Aspinwall R; Rothwell DG; Roldan-Arjona T; Anselmino C; Ward CJ; Cheadle JP; Sampson JR; Lindahl T; Harris PC; Hickson ID
    Proc Natl Acad Sci U S A; 1997 Jan; 94(1):109-14. PubMed ID: 8990169
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The active site of the Escherichia coli MutY DNA adenine glycosylase.
    Wright PM; Yu J; Cillo J; Lu AL
    J Biol Chem; 1999 Oct; 274(41):29011-8. PubMed ID: 10506150
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Formation of a Schiff base intermediate is not required for the adenine glycosylase activity of Escherichia coli MutY.
    Williams SD; David SS
    Biochemistry; 1999 Nov; 38(47):15417-24. PubMed ID: 10569924
    [TBL] [Abstract][Full Text] [Related]  

  • 36. DNA bending and a flip-out mechanism for base excision by the helix-hairpin-helix DNA glycosylase, Escherichia coli AlkA.
    Hollis T; Ichikawa Y; Ellenberger T
    EMBO J; 2000 Feb; 19(4):758-66. PubMed ID: 10675345
    [TBL] [Abstract][Full Text] [Related]  

  • 37. MutY DNA glycosylase: base release and intermediate complex formation.
    Zharkov DO; Grollman AP
    Biochemistry; 1998 Sep; 37(36):12384-94. PubMed ID: 9730810
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Cross-linking of 2-deoxyribonolactone and its beta-elimination product by base excision repair enzymes.
    Kroeger KM; Hashimoto M; Kow YW; Greenberg MM
    Biochemistry; 2003 Mar; 42(8):2449-55. PubMed ID: 12600212
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Mechanism of stimulation of the DNA glycosylase activity of hOGG1 by the major human AP endonuclease: bypass of the AP lyase activity step.
    Vidal AE; Hickson ID; Boiteux S; Radicella JP
    Nucleic Acids Res; 2001 Mar; 29(6):1285-92. PubMed ID: 11238994
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Cell-cycle regulation, intracellular sorting and induced overexpression of the human NTH1 DNA glycosylase involved in removal of formamidopyrimidine residues from DNA.
    Luna L; Bjørås M; Hoff E; Rognes T; Seeberg E
    Mutat Res; 2000 Jul; 460(2):95-104. PubMed ID: 10882850
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.