BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

77 related articles for article (PubMed ID: 11695919)

  • 1. Identification of the gene and characterization of the activity of the trans-aconitate methyltransferase from Saccharomyces cerevisiae.
    Cai H; Dumlao D; Katz JE; Clarke S
    Biochemistry; 2001 Nov; 40(45):13699-709. PubMed ID: 11695919
    [TBL] [Abstract][Full Text] [Related]  

  • 2. 3-Isopropylmalate is the major endogenous substrate of the Saccharomyces cerevisiae trans-aconitate methyltransferase.
    Katz JE; Dumlao DS; Wasserman JI; Lansdown MG; Jung ME; Faull KF; Clarke S
    Biochemistry; 2004 May; 43(20):5976-86. PubMed ID: 15147181
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A novel methyltransferase catalyzes the methyl esterification of trans-aconitate in Escherichia coli.
    Cai H; Clarke S
    J Biol Chem; 1999 May; 274(19):13470-9. PubMed ID: 10224113
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Distinct reactions catalyzed by bacterial and yeast trans-aconitate methyltransferases.
    Cai H; Strouse J; Dumlao D; Jung ME; Clarke S
    Biochemistry; 2001 Feb; 40(7):2210-9. PubMed ID: 11329290
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Functional analysis of cis-aconitate decarboxylase and trans-aconitate metabolism in riboflavin-producing filamentous Ashbya gossypii.
    Sugimoto T; Kato T; Park EY
    J Biosci Bioeng; 2014 May; 117(5):563-8. PubMed ID: 24315530
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Multisite-specific tRNA:m5C-methyltransferase (Trm4) in yeast Saccharomyces cerevisiae: identification of the gene and substrate specificity of the enzyme.
    Motorin Y; Grosjean H
    RNA; 1999 Aug; 5(8):1105-18. PubMed ID: 10445884
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Yeast mRNA cap methyltransferase is a 50-kilodalton protein encoded by an essential gene.
    Mao X; Schwer B; Shuman S
    Mol Cell Biol; 1995 Aug; 15(8):4167-74. PubMed ID: 7623811
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Yeast Hsl7 (histone synthetic lethal 7) catalyses the in vitro formation of omega-N(G)-monomethylarginine in calf thymus histone H2A.
    Miranda TB; Sayegh J; Frankel A; Katz JE; Miranda M; Clarke S
    Biochem J; 2006 May; 395(3):563-70. PubMed ID: 16426232
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Farnesyl cysteine C-terminal methyltransferase activity is dependent upon the STE14 gene product in Saccharomyces cerevisiae.
    Hrycyna CA; Clarke S
    Mol Cell Biol; 1990 Oct; 10(10):5071-6. PubMed ID: 2204804
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Sterol specificity of the Saccharomyces cerevisiae ERG6 gene product expressed in Escherichia coli.
    Venkatramesh M; Guo DA; Harman JG; Nes WD
    Lipids; 1996 Apr; 31(4):373-7. PubMed ID: 8743048
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The yeast Saccharomyces cerevisiae YDL112w ORF encodes the putative 2'-O-ribose methyltransferase catalyzing the formation of Gm18 in tRNAs.
    Cavaillé J; Chetouani F; Bachellerie JP
    RNA; 1999 Jan; 5(1):66-81. PubMed ID: 9917067
    [TBL] [Abstract][Full Text] [Related]  

  • 12. S-Adenosylmethionine-dependent methylation in Saccharomyces cerevisiae. Identification of a novel protein arginine methyltransferase.
    Niewmierzycka A; Clarke S
    J Biol Chem; 1999 Jan; 274(2):814-24. PubMed ID: 9873020
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Characterization of the Saccharomyces cerevisiae YMR318C (ADH6) gene product as a broad specificity NADPH-dependent alcohol dehydrogenase: relevance in aldehyde reduction.
    Larroy C; Fernández MR; González E; Parés X; Biosca JA
    Biochem J; 2002 Jan; 361(Pt 1):163-72. PubMed ID: 11742541
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Complementation of coq3 mutant yeast by mitochondrial targeting of the Escherichia coli UbiG polypeptide: evidence that UbiG catalyzes both O-methylation steps in ubiquinone biosynthesis.
    Hsu AY; Poon WW; Shepherd JA; Myles DC; Clarke CF
    Biochemistry; 1996 Jul; 35(30):9797-806. PubMed ID: 8703953
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Identification of the TRM2 gene encoding the tRNA(m5U54)methyltransferase of Saccharomyces cerevisiae.
    Nordlund ME; Johansson JO; von Pawel-Rammingen U; Byström AS
    RNA; 2000 Jun; 6(6):844-60. PubMed ID: 10864043
    [TBL] [Abstract][Full Text] [Related]  

  • 16. beta-alanine N-methyltransferase of Limonium latifolium. cDNA cloning and functional expression of a novel N-methyltransferase implicated in the synthesis of the osmoprotectant beta-alanine betaine.
    Raman SB; Rathinasabapathi B
    Plant Physiol; 2003 Jul; 132(3):1642-51. PubMed ID: 12857843
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The transcriptional regulator TamR from Streptomyces coelicolor controls a key step in central metabolism during oxidative stress.
    Huang H; Grove A
    Mol Microbiol; 2013 Mar; 87(6):1151-66. PubMed ID: 23320788
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Amino-terminal protein processing in Saccharomyces cerevisiae is an essential function that requires two distinct methionine aminopeptidases.
    Li X; Chang YH
    Proc Natl Acad Sci U S A; 1995 Dec; 92(26):12357-61. PubMed ID: 8618900
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The predominant protein-arginine methyltransferase from Saccharomyces cerevisiae.
    Gary JD; Lin WJ; Yang MC; Herschman HR; Clarke S
    J Biol Chem; 1996 May; 271(21):12585-94. PubMed ID: 8647869
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Functional analysis of the hemK gene product involvement in protoporphyrinogen oxidase activity in yeast.
    Le Guen L; Santos R; Camadro JM
    FEMS Microbiol Lett; 1999 Apr; 173(1):175-82. PubMed ID: 10220893
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.