BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

251 related articles for article (PubMed ID: 11697467)

  • 1. Transport and metabolism of the tea flavonoid (-)-epicatechin by the human intestinal cell line Caco-2.
    Vaidyanathan JB; Walle T
    Pharm Res; 2001 Oct; 18(10):1420-5. PubMed ID: 11697467
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Transport of the flavonoid chrysin and its conjugated metabolites by the human intestinal cell line Caco-2.
    Walle UK; Galijatovic A; Walle T
    Biochem Pharmacol; 1999 Aug; 58(3):431-8. PubMed ID: 10424761
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of Stereochemical Configuration on the Transport and Metabolism of Catechins from Green Tea across Caco-2 Monolayers.
    Ai Z; Liu S; Qu F; Zhang H; Chen Y; Ni D
    Molecules; 2019 Mar; 24(6):. PubMed ID: 30917581
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cellular uptake and efflux of the tea flavonoid (-)epicatechin-3-gallate in the human intestinal cell line Caco-2.
    Vaidyanathan JB; Walle T
    J Pharmacol Exp Ther; 2003 Nov; 307(2):745-52. PubMed ID: 12970388
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Glucuronidation and sulfation of the tea flavonoid (-)-epicatechin by the human and rat enzymes.
    Vaidyanathan JB; Walle T
    Drug Metab Dispos; 2002 Aug; 30(8):897-903. PubMed ID: 12124307
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Transport of trans-tiliroside (kaempferol-3-β-D-(6"-p-coumaroyl-glucopyranoside) and related flavonoids across Caco-2 cells, as a model of absorption and metabolism in the small intestine.
    Luo Z; Morgan MR; Day AJ
    Xenobiotica; 2015; 45(8):722-30. PubMed ID: 25761590
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Presence or absence of a gallate moiety on catechins affects their cellular transport.
    Kadowaki M; Sugihara N; Tagashira T; Terao K; Furuno K
    J Pharm Pharmacol; 2008 Sep; 60(9):1189-95. PubMed ID: 18718123
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Intestinal efflux transport kinetics of green tea catechins in Caco-2 monolayer model.
    Chan KY; Zhang L; Zuo Z
    J Pharm Pharmacol; 2007 Mar; 59(3):395-400. PubMed ID: 17331343
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Investigation of intestinal absorption and disposition of green tea catechins by Caco-2 monolayer model.
    Zhang L; Zheng Y; Chow MS; Zuo Z
    Int J Pharm; 2004 Dec; 287(1-2):1-12. PubMed ID: 15541906
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Transport of quercetin and its glucosides across human intestinal epithelial Caco-2 cells.
    Walgren RA; Walle UK; Walle T
    Biochem Pharmacol; 1998 May; 55(10):1721-7. PubMed ID: 9634009
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Intestinal absorption mechanisms of prenylated flavonoids present in the heat-processed Epimedium koreanum Nakai (Yin Yanghuo).
    Chen Y; Zhao YH; Jia XB; Hu M
    Pharm Res; 2008 Sep; 25(9):2190-9. PubMed ID: 18459036
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Multidrug resistance-associated protein 2 (MRP2) is an efflux transporter of EGCG and its metabolites in the human small intestine.
    Kikuchi T; Hayashi A; Ikeda N; Morita O; Tasaki J
    J Nutr Biochem; 2022 Sep; 107():109071. PubMed ID: 35636688
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An in vitro and in silico study on the flavonoid-mediated modulation of the transport of 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP) through Caco-2 monolayers.
    Schutte ME; Freidig AP; van de Sandt JJ; Alink GM; Rietjens IM; Groten JP
    Toxicol Appl Pharmacol; 2006 Dec; 217(2):204-15. PubMed ID: 16997339
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Characterization of the efflux transporter(s) responsible for restricting intestinal mucosa permeation of an acyloxyalkoxy-based cyclic prodrug of the opioid peptide DADLE.
    Tang F; Borchardt RT
    Pharm Res; 2002 Jun; 19(6):780-6. PubMed ID: 12134947
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Green tea formulations with vitamin C and xylitol on enhanced intestinal transport of green tea catechins.
    Chung JH; Kim S; Lee SJ; Chung JO; Oh YJ; Shim SM
    J Food Sci; 2013 May; 78(5):C685-90. PubMed ID: 23551173
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Transport characteristics of tryptanthrin and its inhibitory effect on P-gp and MRP2 in Caco-2 cells.
    Zhu X; Zhang X; Ma G; Yan J; Wang H; Yang Q
    J Pharm Pharm Sci; 2011; 14(3):325-35. PubMed ID: 21824448
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Characterization of the efflux transporter(s) responsible for restricting intestinal mucosa permeation of the coumarinic acid-based cyclic prodrug of the opioid peptide DADLE.
    Tang F; Borchardt RT
    Pharm Res; 2002 Jun; 19(6):787-93. PubMed ID: 12134948
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Small intestinal efflux mediated by MRP2 and BCRP shifts sulfasalazine intestinal permeability from high to low, enabling its colonic targeting.
    Dahan A; Amidon GL
    Am J Physiol Gastrointest Liver Physiol; 2009 Aug; 297(2):G371-7. PubMed ID: 19541926
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Delineating the contribution of secretory transporters in the efflux of etoposide using Madin-Darby canine kidney (MDCK) cells overexpressing P-glycoprotein (Pgp), multidrug resistance-associated protein (MRP1), and canalicular multispecific organic anion transporter (cMOAT).
    Guo A; Marinaro W; Hu P; Sinko PJ
    Drug Metab Dispos; 2002 Apr; 30(4):457-63. PubMed ID: 11901101
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Transport of genistein-7-glucoside by human intestinal CACO-2 cells: potential role for MRP2.
    Walle UK; French KL; Walgren RA; Walle T
    Res Commun Mol Pathol Pharmacol; 1999 Jan; 103(1):45-56. PubMed ID: 10440570
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.