BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

253 related articles for article (PubMed ID: 11697467)

  • 21. Intestinal transport of irinotecan in Caco-2 cells and MDCK II cells overexpressing efflux transporters Pgp, cMOAT, and MRP1.
    Luo FR; Paranjpe PV; Guo A; Rubin E; Sinko P
    Drug Metab Dispos; 2002 Jul; 30(7):763-70. PubMed ID: 12065434
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Effect of the co-occurring components from green tea on the intestinal absorption and disposition of green tea polyphenols in Caco-2 monolayer model.
    Zhang L; Chow MS; Zuo Z
    J Pharm Pharmacol; 2006 Jan; 58(1):37-44. PubMed ID: 16393462
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Study on mechanism of low bioavailability of black tea theaflavins by using Caco-2 cell monolayer.
    Qu F; Ai Z; Liu S; Zhang H; Chen Y; Wang Y; Ni D
    Drug Deliv; 2021 Dec; 28(1):1737-1747. PubMed ID: 34463173
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Active transepithelial transport of irinotecan (CPT-11) and its metabolites by human intestinal Caco-2 cells.
    Yamamoto W; Verweij J; de Bruijn P; de Jonge MJ; Takano H; Nishiyama M; Kurihara M; Sparreboom A
    Anticancer Drugs; 2001 Jun; 12(5):419-32. PubMed ID: 11395570
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Mechanisms of transport and structure-permeability relationship of sulfasalazine and its analogs in Caco-2 cell monolayers.
    Liang E; Proudfoot J; Yazdanian M
    Pharm Res; 2000 Oct; 17(10):1168-74. PubMed ID: 11145220
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Studies on pharmacokinetic properties and absorption mechanism of phloretin: In vivo and in vitro.
    Zhao YY; Fan Y; Wang M; Wang J; Cheng JX; Zou JB; Zhang XF; Shi YJ; Guo DY
    Biomed Pharmacother; 2020 Dec; 132():110809. PubMed ID: 33049584
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Transport characteristics of fexofenadine in the Caco-2 cell model.
    Petri N; Tannergren C; Rungstad D; Lennernäs H
    Pharm Res; 2004 Aug; 21(8):1398-404. PubMed ID: 15359574
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Resveratrol transport and metabolism by human intestinal Caco-2 cells.
    Kaldas MI; Walle UK; Walle T
    J Pharm Pharmacol; 2003 Mar; 55(3):307-12. PubMed ID: 12724035
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Vectorial transport of fexofenadine across Caco-2 cells: involvement of apical uptake and basolateral efflux transporters.
    Ming X; Knight BM; Thakker DR
    Mol Pharm; 2011 Oct; 8(5):1677-86. PubMed ID: 21780830
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Differentiated Caco-2 cell monolayers exhibit adaptation in the transport and metabolism of flavan-3-ols with chronic exposure to both isolated flavan-3-ols and enriched extracts.
    Redan BW; Chegeni M; Ferruzzi MG
    Food Funct; 2017 Jan; 8(1):111-121. PubMed ID: 27808339
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Cellular Uptake and Transport Characteristics of FL118 Derivatives in Caco-2 Cell Monolayers.
    Zhou Y; Hu W; Zhang X; Wang Y; Zhuang W; Li F; Li Q
    Chem Pharm Bull (Tokyo); 2021; 69(11):1054-1060. PubMed ID: 34719586
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Modulation of (-)-epicatechin metabolism by coadministration with other polyphenols in Caco-2 cell model.
    Sanchez-Bridge B; Lévèques A; Li H; Bertschy E; Patin A; Actis-Goretta L
    Drug Metab Dispos; 2015 Jan; 43(1):9-16. PubMed ID: 25315342
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Transport of the cooked-food mutagen 2-amino-1-methyl-6-phenylimidazo-[4,5-b]pyridine (PhIP) across the human intestinal Caco-2 cell monolayer: role of efflux pumps.
    Walle UK; Walle T
    Carcinogenesis; 1999 Nov; 20(11):2153-7. PubMed ID: 10545419
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Transepithelial transport mechanisms of 7,8-dihydroxyflavone, a small molecular TrkB receptor agonist, in human intestinal Caco-2 cells.
    Chen Y; Xue F; Xia G; Zhao Z; Chen C; Li Y; Zhang Y
    Food Funct; 2019 Aug; 10(8):5215-5227. PubMed ID: 31384856
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Transport of parthenolide across human intestinal cells (Caco-2).
    Khan SI; Abourashed EA; Khan IA; Walker LA
    Planta Med; 2003 Nov; 69(11):1009-12. PubMed ID: 14735438
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Transport of 5,5-diphenylbarbituric acid and its precursors and their effect on P-gp, MRP2 and CYP3A4 in Caco-2 and LS180 cells.
    Fan J; Maeng HJ; Du Y; Kwan D; Pang KS
    Eur J Pharm Sci; 2011 Jan; 42(1-2):19-29. PubMed ID: 20955791
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Using Caffeine and Free Amino Acids To Enhance the Transepithelial Transport of Catechins in Caco-2 Cells.
    Wang Y; Zuo Y; Deng S; Zhu F; Liu Q; Wang R; Li T; Cai H; Wan X; Xie Z; Xie Z; Li D
    J Agric Food Chem; 2019 May; 67(19):5477-5485. PubMed ID: 30983343
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Tea polyphenols inhibit the transport of dietary phenolic acids mediated by the monocarboxylic acid transporter (MCT) in intestinal Caco-2 cell monolayers.
    Konishi Y; Kobayashi S; Shimizu M
    J Agric Food Chem; 2003 Dec; 51(25):7296-302. PubMed ID: 14640574
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Interplay between CYP3A-mediated metabolism and polarized efflux of terfenadine and its metabolites in intestinal epithelial Caco-2 (TC7) cell monolayers.
    Raeissi SD; Hidalgo IJ; Segura-Aguilar J; Artursson P
    Pharm Res; 1999 May; 16(5):625-32. PubMed ID: 10350002
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Correlation between oral drug absorption in humans, and apparent drug permeability in TC-7 cells, a human epithelial intestinal cell line: comparison with the parental Caco-2 cell line.
    Grès MC; Julian B; Bourrié M; Meunier V; Roques C; Berger M; Boulenc X; Berger Y; Fabre G
    Pharm Res; 1998 May; 15(5):726-33. PubMed ID: 9619781
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.