These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

214 related articles for article (PubMed ID: 1169755)

  • 1. Effect of local cooling on sweating rate and cold sensation.
    Crawshaw LI; Nadel ER; Stolwijk JA; Stamford BA
    Pflugers Arch; 1975; 354(1):19-27. PubMed ID: 1169755
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Differential thermal sensitivity in the human skin.
    Nadel ER; Mitchell JW; Stolwijk JA
    Pflugers Arch; 1973; 340(1):71-6. PubMed ID: 4735965
    [No Abstract]   [Full Text] [Related]  

  • 3. Regional differences in temperature sensation and thermal comfort in humans.
    Nakamura M; Yoda T; Crawshaw LI; Yasuhara S; Saito Y; Kasuga M; Nagashima K; Kanosue K
    J Appl Physiol (1985); 2008 Dec; 105(6):1897-906. PubMed ID: 18845785
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Role of skin temperature in the control of sweating.
    McCaffrey TV; Wurster RD; Jacobs HK; Euler DE; Geis GS
    J Appl Physiol Respir Environ Exerc Physiol; 1979 Sep; 47(3):591-7. PubMed ID: 533754
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The distribution of cutaneous sudomotor and alliesthesial thermosensitivity in mildly heat-stressed humans: an open-loop approach.
    Cotter JD; Taylor NA
    J Physiol; 2005 May; 565(Pt 1):335-45. PubMed ID: 15760945
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Thermosensory mapping of skin wetness sensitivity across the body of young males and females at rest and following maximal incremental running.
    Valenza A; Bianco A; Filingeri D
    J Physiol; 2019 Jul; 597(13):3315-3332. PubMed ID: 31093981
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Contribution of skin thermal sensitivities of large body areas to sweating response.
    Libert JP; Candas V; Sagot JC; Meyer JP; Vogt JJ; Ogawa T
    Jpn J Physiol; 1984; 34(1):75-88. PubMed ID: 6727070
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of thermal stress during rest and exercise in the paediatric population.
    Falk B
    Sports Med; 1998 Apr; 25(4):221-40. PubMed ID: 9587181
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Human sudomotor responses to heating and cooling upper-body skin surfaces: cutaneous thermal sensitivity.
    Patterson MJ; Cotter JD; Taylor NA
    Acta Physiol Scand; 1998 Jul; 163(3):289-96. PubMed ID: 9715741
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Regional rates of sweat evaporation during leg and arm cycling.
    Ayling JH
    Br J Sports Med; 1986 Mar; 20(1):35-7. PubMed ID: 3697601
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of neck versus chest cooling on responses to work in heat.
    Shvartz E
    J Appl Physiol; 1976 May; 40(5):668-72. PubMed ID: 931891
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Relative importance of different surface regions for thermal comfort in humans.
    Nakamura M; Yoda T; Crawshaw LI; Kasuga M; Uchida Y; Tokizawa K; Nagashima K; Kanosue K
    Eur J Appl Physiol; 2013 Jan; 113(1):63-76. PubMed ID: 22569893
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Sweating responses to central and peripheral heating in spinal man.
    Downey JA; Huckaba CE; Kelley PS; Tam HS; Darling RC; Cheh HY
    J Appl Physiol; 1976 May; 40(5):701-6. PubMed ID: 931896
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The key local segments of human body for personalized heating and cooling.
    Wang L; Tian Y; Kim J; Yin H
    J Therm Biol; 2019 Apr; 81():118-127. PubMed ID: 30975408
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evidence that transient changes in sudomotor output with cold and warm fluid ingestion are independently modulated by abdominal, but not oral thermoreceptors.
    Morris NB; Bain AR; Cramer MN; Jay O
    J Appl Physiol (1985); 2014 Apr; 116(8):1088-95. PubMed ID: 24577060
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Innocuous cooling can produce nociceptive sensations that are inhibited during dynamic mechanical contact.
    Green BG; Pope JV
    Exp Brain Res; 2003 Feb; 148(3):290-9. PubMed ID: 12541140
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Body mapping of cutaneous wetness perception across the human torso during thermo-neutral and warm environmental exposures.
    Filingeri D; Fournet D; Hodder S; Havenith G
    J Appl Physiol (1985); 2014 Oct; 117(8):887-97. PubMed ID: 25103965
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Indirect hand and forearm vasomotion: Regional variations in cutaneous thermosensitivity during normothermia and mild hyperthermia.
    Burdon CA; Tagami K; Park J; Caldwell JN; Taylor NA
    J Therm Biol; 2017 Apr; 65():95-104. PubMed ID: 28343583
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [The effect of cooling using ice on the impulse activity of the skin cold thermoreceptors in the rabbit].
    Arokina NK; Kuz'mina NV
    Fiziol Zh Im I M Sechenova; 1993 Dec; 79(12):44-50. PubMed ID: 8162120
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Response characteristics of cutaneous cold receptors in the monkey.
    Kenshalo DR; Duclaux R
    J Neurophysiol; 1977 Mar; 40(2):319-32. PubMed ID: 403250
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.