These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

100 related articles for article (PubMed ID: 11697725)

  • 1. Structure stability of lytic peptides during their interactions with lipid bilayers.
    Chen HM; Lee CH
    J Biomol Struct Dyn; 2001 Oct; 19(2):193-9. PubMed ID: 11697725
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mechanism of antibacterial action of dermaseptin B2: interplay between helix-hinge-helix structure and membrane curvature strain.
    Galanth C; Abbassi F; Lequin O; Ayala-Sanmartin J; Ladram A; Nicolas P; Amiche M
    Biochemistry; 2009 Jan; 48(2):313-27. PubMed ID: 19113844
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Interactions of the designed antimicrobial peptide MB21 and truncated dermaseptin S3 with lipid bilayers: molecular-dynamics simulations.
    Shepherd CM; Vogel HJ; Tieleman DP
    Biochem J; 2003 Feb; 370(Pt 1):233-43. PubMed ID: 12423203
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Coupling molecular dynamics simulations with experiments for the rational design of indolicidin-analogous antimicrobial peptides.
    Tsai CW; Hsu NY; Wang CH; Lu CY; Chang Y; Tsai HH; Ruaan RC
    J Mol Biol; 2009 Sep; 392(3):837-54. PubMed ID: 19576903
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dermaseptin S9, an alpha-helical antimicrobial peptide with a hydrophobic core and cationic termini.
    Lequin O; Ladram A; Chabbert L; Bruston F; Convert O; Vanhoye D; Chassaing G; Nicolas P; Amiche M
    Biochemistry; 2006 Jan; 45(2):468-80. PubMed ID: 16401077
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A solvent model for simulations of peptides in bilayers. II. Membrane-spanning alpha-helices.
    Efremov RG; Nolde DE; Vergoten G; Arseniev AS
    Biophys J; 1999 May; 76(5):2460-71. PubMed ID: 10233063
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structural studies of porcine myeloid antibacterial peptide PMAP-23 and its analogues in DPC micelles by NMR spectroscopy.
    Park K; Oh D; Shin SY; Hahm KS; Kim Y
    Biochem Biophys Res Commun; 2002 Jan; 290(1):204-12. PubMed ID: 11779154
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Binding and insertion of alpha-helical anti-microbial peptides in POPC bilayers studied by molecular dynamics simulations.
    Kandasamy SK; Larson RG
    Chem Phys Lipids; 2004 Nov; 132(1):113-32. PubMed ID: 15530453
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Solution structures of stomoxyn and spinigerin, two insect antimicrobial peptides with an alpha-helical conformation.
    Landon C; Meudal H; Boulanger N; Bulet P; Vovelle F
    Biopolymers; 2006 Feb; 81(2):92-103. PubMed ID: 16170803
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mechanisms for the modulation of membrane bilayer properties by amphipathic helical peptides.
    Epand RM; Shai Y; Segrest JP; Anantharamaiah GM
    Biopolymers; 1995; 37(5):319-38. PubMed ID: 7632881
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Solid-state nuclear magnetic resonance relaxation studies of the interaction mechanism of antimicrobial peptides with phospholipid bilayer membranes.
    Lu JX; Damodaran K; Blazyk J; Lorigan GA
    Biochemistry; 2005 Aug; 44(30):10208-17. PubMed ID: 16042398
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Interaction of an antimicrobial peptide with a model lipid bilayer using molecular dynamics simulation.
    Soliman W; Bhattacharjee S; Kaur K
    Langmuir; 2009 Jun; 25(12):6591-5. PubMed ID: 19505152
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Three-dimensional structure in lipid micelles of the pediocin-like antimicrobial peptide curvacin A.
    Haugen HS; Fimland G; Nissen-Meyer J; Kristiansen PE
    Biochemistry; 2005 Dec; 44(49):16149-57. PubMed ID: 16331975
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Membrane translocation mechanism of the antimicrobial peptide buforin 2.
    Kobayashi S; Chikushi A; Tougu S; Imura Y; Nishida M; Yano Y; Matsuzaki K
    Biochemistry; 2004 Dec; 43(49):15610-6. PubMed ID: 15581374
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Solution structure and membrane interaction mode of an antimicrobial peptide gaegurin 4.
    Chi SW; Kim JS; Kim DH; Lee SH; Park YH; Han KH
    Biochem Biophys Res Commun; 2007 Jan; 352(3):592-7. PubMed ID: 17141187
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comparative mode of action of novel hybrid peptide CS-1a and its rearranged amphipathic analogue CS-2a.
    Joshi S; Bisht GS; Rawat DS; Maiti S; Pasha S
    FEBS J; 2012 Oct; 279(20):3776-90. PubMed ID: 22883393
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Peptide helicity and membrane surface charge modulate the balance of electrostatic and hydrophobic interactions with lipid bilayers and biological membranes.
    Dathe M; Schümann M; Wieprecht T; Winkler A; Beyermann M; Krause E; Matsuzaki K; Murase O; Bienert M
    Biochemistry; 1996 Sep; 35(38):12612-22. PubMed ID: 8823199
    [TBL] [Abstract][Full Text] [Related]  

  • 18. De novo design, synthesis, and characterization of a pore-forming small globular protein and its insertion into lipid bilayers.
    Lee S; Kiyota T; Kunitake T; Matsumoto E; Yamashita S; Anzai K; Sugihara G
    Biochemistry; 1997 Apr; 36(13):3782-91. PubMed ID: 9092807
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Modulation of glycophorin A transmembrane helix interactions by lipid bilayers: molecular dynamics calculations.
    Petrache HI; Grossfield A; MacKenzie KR; Engelman DM; Woolf TB
    J Mol Biol; 2000 Sep; 302(3):727-46. PubMed ID: 10986130
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Interactions of cationic-hydrophobic peptides with lipid bilayers: a Monte Carlo simulation method.
    Shental-Bechor D; Haliloglu T; Ben-Tal N
    Biophys J; 2007 Sep; 93(6):1858-71. PubMed ID: 17496025
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.