BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

531 related articles for article (PubMed ID: 11697899)

  • 21. Identification of two serine residues important for p53 DNA binding and protein stability.
    Wei G; Liu G; Liu X
    FEBS Lett; 2003 May; 543(1-3):16-20. PubMed ID: 12753897
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The prolyl isomerase Pin1 reveals a mechanism to control p53 functions after genotoxic insults.
    Zacchi P; Gostissa M; Uchida T; Salvagno C; Avolio F; Volinia S; Ronai Z; Blandino G; Schneider C; Del Sal G
    Nature; 2002 Oct; 419(6909):853-7. PubMed ID: 12397362
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A p53 amino-terminal nuclear export signal inhibited by DNA damage-induced phosphorylation.
    Zhang Y; Xiong Y
    Science; 2001 Jun; 292(5523):1910-5. PubMed ID: 11397945
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Mouse mutants reveal that putative protein interaction sites in the p53 proline-rich domain are dispensable for tumor suppression.
    Toledo F; Lee CJ; Krummel KA; Rodewald LW; Liu CW; Wahl GM
    Mol Cell Biol; 2007 Feb; 27(4):1425-32. PubMed ID: 17158931
    [TBL] [Abstract][Full Text] [Related]  

  • 25. p53 protein stability in tumour cells is not determined by mutation but is dependent on Mdm2 binding.
    Midgley CA; Lane DP
    Oncogene; 1997 Sep; 15(10):1179-89. PubMed ID: 9294611
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Several hydrophobic amino acids in the p53 amino-terminal domain are required for transcriptional activation, binding to mdm-2 and the adenovirus 5 E1B 55-kD protein.
    Lin J; Chen J; Elenbaas B; Levine AJ
    Genes Dev; 1994 May; 8(10):1235-46. PubMed ID: 7926727
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Stabilization and activation of p53 by the coactivator protein TAFII31.
    Buschmann T; Lin Y; Aithmitti N; Fuchs SY; Lu H; Resnick-Silverman L; Manfredi JJ; Ronai Z; Wu X
    J Biol Chem; 2001 Apr; 276(17):13852-7. PubMed ID: 11278372
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Stimulation of E2F1/DP1 transcriptional activity by MDM2 oncoprotein.
    Martin K; Trouche D; Hagemeier C; Sørensen TS; La Thangue NB; Kouzarides T
    Nature; 1995 Jun; 375(6533):691-4. PubMed ID: 7791903
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A conserved intronic response element mediates direct p53-dependent transcriptional activation of both the human and murine bax genes.
    Thornborrow EC; Patel S; Mastropietro AE; Schwartzfarb EM; Manfredi JJ
    Oncogene; 2002 Feb; 21(7):990-9. PubMed ID: 11850816
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A second p53 binding site in the central domain of Mdm2 is essential for p53 ubiquitination.
    Ma J; Martin JD; Zhang H; Auger KR; Ho TF; Kirkpatrick RB; Grooms MH; Johanson KO; Tummino PJ; Copeland RA; Lai Z
    Biochemistry; 2006 Aug; 45(30):9238-45. PubMed ID: 16866370
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Structural basis of restoring sequence-specific DNA binding and transactivation to mutant p53 by suppressor mutations.
    Suad O; Rozenberg H; Brosh R; Diskin-Posner Y; Kessler N; Shimon LJ; Frolow F; Liran A; Rotter V; Shakked Z
    J Mol Biol; 2009 Jan; 385(1):249-65. PubMed ID: 18996393
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The requirement for the p53 proline-rich functional domain for mediation of apoptosis is correlated with specific PIG3 gene transactivation and with transcriptional repression.
    Venot C; Maratrat M; Dureuil C; Conseiller E; Bracco L; Debussche L
    EMBO J; 1998 Aug; 17(16):4668-79. PubMed ID: 9707426
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The carboxy-terminal serine 392 phosphorylation site of human p53 is not required for wild-type activities.
    Fiscella M; Zambrano N; Ullrich SJ; Unger T; Lin D; Cho B; Mercer WE; Anderson CW; Appella E
    Oncogene; 1994 Nov; 9(11):3249-57. PubMed ID: 7936649
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Mutational analysis reveals a dual role of Mdm2 acidic domain in the regulation of p53 stability.
    Dolezelova P; Cetkovska K; Vousden KH; Uldrijan S
    FEBS Lett; 2012 Jul; 586(16):2225-31. PubMed ID: 22659184
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Mdm2 inhibition of p53 induces E2F1 transactivation via p21.
    Wunderlich M; Berberich SJ
    Oncogene; 2002 Jun; 21(28):4414-21. PubMed ID: 12080472
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Comparative study of the p53-mdm2 and p53-MDMX interfaces.
    Böttger V; Böttger A; Garcia-Echeverria C; Ramos YF; van der Eb AJ; Jochemsen AG; Lane DP
    Oncogene; 1999 Jan; 18(1):189-99. PubMed ID: 9926934
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Overexpression of Mdm2 and MdmX fusion proteins alters p53 mediated transactivation, ubiquitination, and degradation.
    Ghosh M; Huang K; Berberich SJ
    Biochemistry; 2003 Mar; 42(8):2291-9. PubMed ID: 12600196
    [TBL] [Abstract][Full Text] [Related]  

  • 38. MDMX stability is regulated by p53-induced caspase cleavage in NIH3T3 mouse fibroblasts.
    Gentiletti F; Mancini F; D'Angelo M; Sacchi A; Pontecorvi A; Jochemsen AG; Moretti F
    Oncogene; 2002 Jan; 21(6):867-77. PubMed ID: 11840332
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Rescue of mutant p53 transcription function by ellipticine.
    Peng Y; Li C; Chen L; Sebti S; Chen J
    Oncogene; 2003 Jul; 22(29):4478-87. PubMed ID: 12881704
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Activating transcription factor 3, a stress sensor, activates p53 by blocking its ubiquitination.
    Yan C; Lu D; Hai T; Boyd DD
    EMBO J; 2005 Jul; 24(13):2425-35. PubMed ID: 15933712
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 27.