BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

264 related articles for article (PubMed ID: 11697903)

  • 1. Specific interaction of the potassium channel beta-subunit minK with the sarcomeric protein T-cap suggests a T-tubule-myofibril linking system.
    Furukawa T; Ono Y; Tsuchiya H; Katayama Y; Bang ML; Labeit D; Labeit S; Inagaki N; Gregorio CC
    J Mol Biol; 2001 Nov; 313(4):775-84. PubMed ID: 11697903
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Identification of muscle specific ring finger proteins as potential regulators of the titin kinase domain.
    Centner T; Yano J; Kimura E; McElhinny AS; Pelin K; Witt CC; Bang ML; Trombitas K; Granzier H; Gregorio CC; Sorimachi H; Labeit S
    J Mol Biol; 2001 Mar; 306(4):717-26. PubMed ID: 11243782
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Targeting of cardiac muscle titin fragments to the Z-bands and dense bodies of living muscle and non-muscle cells.
    Ayoob JC; Turnacioglu KK; Mittal B; Sanger JM; Sanger JW
    Cell Motil Cytoskeleton; 2000 Jan; 45(1):67-82. PubMed ID: 10618168
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Coassembly of K(V)LQT1 and minK (IsK) proteins to form cardiac I(Ks) potassium channel.
    Sanguinetti MC; Curran ME; Zou A; Shen J; Spector PS; Atkinson DL; Keating MT
    Nature; 1996 Nov; 384(6604):80-3. PubMed ID: 8900283
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The NH2 terminus of titin spans the Z-disc: its interaction with a novel 19-kD ligand (T-cap) is required for sarcomeric integrity.
    Gregorio CC; Trombitás K; Centner T; Kolmerer B; Stier G; Kunke K; Suzuki K; Obermayr F; Herrmann B; Granzier H; Sorimachi H; Labeit S
    J Cell Biol; 1998 Nov; 143(4):1013-27. PubMed ID: 9817758
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The N-terminal Z repeat 5 of connectin/titin binds to the C-terminal region of alpha-actinin.
    Ohtsuka H; Yajima H; Maruyama K; Kimura S
    Biochem Biophys Res Commun; 1997 Jun; 235(1):1-3. PubMed ID: 9196024
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Expression of distinct classes of titin isoforms in striated and smooth muscles by alternative splicing, and their conserved interaction with filamins.
    Labeit S; Lahmers S; Burkart C; Fong C; McNabb M; Witt S; Witt C; Labeit D; Granzier H
    J Mol Biol; 2006 Sep; 362(4):664-81. PubMed ID: 16949617
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Identification of a repeated domain within mammalian alpha-synemin that interacts directly with talin.
    Sun N; Critchley DR; Paulin D; Li Z; Robson RM
    Exp Cell Res; 2008 May; 314(8):1839-49. PubMed ID: 18342854
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Titin-cap associates with, and regulates secretion of, Myostatin.
    Nicholas G; Thomas M; Langley B; Somers W; Patel K; Kemp CF; Sharma M; Kambadur R
    J Cell Physiol; 2002 Oct; 193(1):120-31. PubMed ID: 12209887
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Molecular basis for differential sensitivity of KCNQ and I(Ks) channels to the cognitive enhancer XE991.
    Wang HS; Brown BS; McKinnon D; Cohen IS
    Mol Pharmacol; 2000 Jun; 57(6):1218-23. PubMed ID: 10825393
    [TBL] [Abstract][Full Text] [Related]  

  • 11. MinK endows the I(Ks) potassium channel pore with sensitivity to internal tetraethylammonium.
    Sesti F; Tai KK; Goldstein SA
    Biophys J; 2000 Sep; 79(3):1369-78. PubMed ID: 10968999
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Molecular structure of the sarcomeric Z-disk: two types of titin interactions lead to an asymmetrical sorting of alpha-actinin.
    Young P; Ferguson C; Bañuelos S; Gautel M
    EMBO J; 1998 Mar; 17(6):1614-24. PubMed ID: 9501083
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Titin mutations as the molecular basis for dilated cardiomyopathy.
    Itoh-Satoh M; Hayashi T; Nishi H; Koga Y; Arimura T; Koyanagi T; Takahashi M; Hohda S; Ueda K; Nouchi T; Hiroe M; Marumo F; Imaizumi T; Yasunami M; Kimura A
    Biochem Biophys Res Commun; 2002 Feb; 291(2):385-93. PubMed ID: 11846417
    [TBL] [Abstract][Full Text] [Related]  

  • 14. MinK subdomains that mediate modulation of and association with KvLQT1.
    Tapper AR; George AL
    J Gen Physiol; 2000 Sep; 116(3):379-90. PubMed ID: 10962015
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Accessory Kvbeta1 subunits differentially modulate the functional expression of voltage-gated K+ channels in mouse ventricular myocytes.
    Aimond F; Kwak SP; Rhodes KJ; Nerbonne JM
    Circ Res; 2005 Mar; 96(4):451-8. PubMed ID: 15662035
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dynamics of obscurin localization during differentiation and remodeling of cardiac myocytes: obscurin as an integrator of myofibrillar structure.
    Borisov AB; Kontrogianni-Konstantopoulos A; Bloch RJ; Westfall MV; Russell MW
    J Histochem Cytochem; 2004 Sep; 52(9):1117-27. PubMed ID: 15314079
    [TBL] [Abstract][Full Text] [Related]  

  • 17. KCNE1 binds to the KCNQ1 pore to regulate potassium channel activity.
    Melman YF; Um SY; Krumerman A; Kagan A; McDonald TV
    Neuron; 2004 Jun; 42(6):927-37. PubMed ID: 15207237
    [TBL] [Abstract][Full Text] [Related]  

  • 18. MinK-KvLQT1 fusion proteins, evidence for multiple stoichiometries of the assembled IsK channel.
    Wang W; Xia J; Kass RS
    J Biol Chem; 1998 Dec; 273(51):34069-74. PubMed ID: 9852064
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Potassium channel subunits encoded by the KCNE gene family: physiology and pathophysiology of the MinK-related peptides (MiRPs).
    Abbott GW; Goldstein SA
    Mol Interv; 2001 Jun; 1(2):95-107. PubMed ID: 14993329
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The conduction pore of a cardiac potassium channel.
    Tai KK; Goldstein SA
    Nature; 1998 Feb; 391(6667):605-8. PubMed ID: 9468141
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.