These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
275 related articles for article (PubMed ID: 11697954)
21. Synthesis of the glycosyl amino acids N alpha-Fmoc-Ser[Ac4-beta-D-Galp-(1-->3)-Ac2-alpha-D-GalN3p]-OPfp and N alpha-Fmoc-Thr[Ac4-beta-D-Galp-(1-->3)-Ac2-alpha-D-GalN3p]-OPfp and the application in the solid-phase peptide synthesis of multiply glycosylated mucin peptides with Tn and T antigenic structures. Paulsen H; Peters S; Bielfeldt T; Meldal M; Bock K Carbohydr Res; 1995 Mar; 268(1):17-34. PubMed ID: 7736464 [TBL] [Abstract][Full Text] [Related]
22. Specificities of anti-sialyl-Tn and anti-Tn monoclonal antibodies generated using novel clustered synthetic glycopeptide epitopes. Reddish MA; Jackson L; Koganty RR; Qiu D; Hong W; Longenecker BM Glycoconj J; 1997 Aug; 14(5):549-60. PubMed ID: 9298687 [TBL] [Abstract][Full Text] [Related]
23. One-pot multi-enzyme (OPME) chemoenzymatic synthesis of sialyl-Tn-MUC1 and sialyl-T-MUC1 glycopeptides containing natural or non-natural sialic acid. Malekan H; Fung G; Thon V; Khedri Z; Yu H; Qu J; Li Y; Ding L; Lam KS; Chen X Bioorg Med Chem; 2013 Aug; 21(16):4778-85. PubMed ID: 23535562 [TBL] [Abstract][Full Text] [Related]
24. Linear synthesis and immunological properties of a fully synthetic vaccine candidate containing a sialylated MUC1 glycopeptide. Thompson P; Lakshminarayanan V; Supekar NT; Bradley JM; Cohen PA; Wolfert MA; Gendler SJ; Boons GJ Chem Commun (Camb); 2015 Jun; 51(50):10214-7. PubMed ID: 26022217 [TBL] [Abstract][Full Text] [Related]
25. Expression of core 2 beta-1,6-N-acetylglucosaminyltransferase in a human pancreatic cancer cell line results in altered expression of MUC1 tumor-associated epitopes. Beum PV; Singh J; Burdick M; Hollingsworth MA; Cheng PW J Biol Chem; 1999 Aug; 274(35):24641-8. PubMed ID: 10455130 [TBL] [Abstract][Full Text] [Related]
26. Diverse glycosylation of MUC1 and MUC2: potential significance in tumor immunity. Irimura T; Denda K; Iida Si; Takeuchi H; Kato K J Biochem; 1999 Dec; 126(6):975-85. PubMed ID: 10578046 [TBL] [Abstract][Full Text] [Related]
28. Formation of lactones from sialylated MUC1 glycopeptides. Pudelko M; Lindgren A; Tengel T; Reis CA; Elofsson M; Kihlberg J Org Biomol Chem; 2006 Feb; 4(4):713-20. PubMed ID: 16467946 [TBL] [Abstract][Full Text] [Related]
29. Site-specific conformational alteration induced by sialylation of MUC1 tandem repeating glycopeptides at an epitope region for the anti-KL-6 monoclonal antibody. Matsushita T; Ohyabu N; Fujitani N; Naruchi K; Shimizu H; Hinou H; Nishimura S Biochemistry; 2013 Jan; 52(2):402-14. PubMed ID: 23259747 [TBL] [Abstract][Full Text] [Related]
30. T cell clones with normal or defective O-galactosylation from a patient with permanent mixed-field polyagglutinability. Thurnher M; Clausen H; Fierz W; Lanzavecchia A; Berger EG Eur J Immunol; 1992 Jul; 22(7):1835-42. PubMed ID: 1378020 [TBL] [Abstract][Full Text] [Related]
31. Tumor-associated Tn-MUC1 glycoform is internalized through the macrophage galactose-type C-type lectin and delivered to the HLA class I and II compartments in dendritic cells. Napoletano C; Rughetti A; Agervig Tarp MP; Coleman J; Bennett EP; Picco G; Sale P; Denda-Nagai K; Irimura T; Mandel U; Clausen H; Frati L; Taylor-Papadimitriou J; Burchell J; Nuti M Cancer Res; 2007 Sep; 67(17):8358-67. PubMed ID: 17804752 [TBL] [Abstract][Full Text] [Related]
32. Site directed processing: role of amino acid sequences and glycosylation of acceptor glycopeptides in the assembly of extended mucin type O-glycan core 2. Brockhausen I; Dowler T; Paulsen H Biochim Biophys Acta; 2009 Oct; 1790(10):1244-57. PubMed ID: 19524017 [TBL] [Abstract][Full Text] [Related]
33. Redefined substrate specificity of ST6GalNAc II: a second candidate sialyl-Tn synthase. Kono M; Tsuda T; Ogata S; Takashima S; Liu H; Hamamoto T; Itzkowitz SH; Nishimura S; Tsuji S Biochem Biophys Res Commun; 2000 May; 272(1):94-7. PubMed ID: 10872809 [TBL] [Abstract][Full Text] [Related]
34. Binding characteristics of an anti-Siaalpha2-6GalNAcalpha-Ser/Thr (sialyl Tn) monoclonal antibody (MLS 132). Tanaka N; Nakada H; Inoue M; Yamashina I Eur J Biochem; 1999 Jul; 263(1):27-32. PubMed ID: 10429183 [TBL] [Abstract][Full Text] [Related]
35. An efficient approach for the characterization of mucin-type glycopeptides: the effect of O-glycosylation on the conformation of synthetic mucin peptides. Hashimoto R; Fujitani N; Takegawa Y; Kurogochi M; Matsushita T; Naruchi K; Ohyabu N; Hinou H; Gao XD; Manri N; Satake H; Kaneko A; Sakamoto T; Nishimura S Chemistry; 2011 Feb; 17(8):2393-404. PubMed ID: 21264968 [TBL] [Abstract][Full Text] [Related]
36. Glycosylation of the tandem repeat unit of the MUC2 polypeptide leading to the synthesis of the Tn antigen. Inoue M; Yamashina I; Nakada H Biochem Biophys Res Commun; 1998 Apr; 245(1):23-7. PubMed ID: 9535776 [TBL] [Abstract][Full Text] [Related]
37. Products of Chemoenzymatic Synthesis Representing MUC1 Tandem Repeat Unit with T-, ST- or STn-antigen Revealed Distinct Specificities of Anti-MUC1 Antibodies. Yoshimura Y; Denda-Nagai K; Takahashi Y; Nagashima I; Shimizu H; Kishimoto T; Noji M; Shichino S; Chiba Y; Irimura T Sci Rep; 2019 Nov; 9(1):16641. PubMed ID: 31719620 [TBL] [Abstract][Full Text] [Related]
38. Chemoenzymatically synthesized multimeric Tn/STn MUC1 glycopeptides elicit cancer-specific anti-MUC1 antibody responses and override tolerance. Sørensen AL; Reis CA; Tarp MA; Mandel U; Ramachandran K; Sankaranarayanan V; Schwientek T; Graham R; Taylor-Papadimitriou J; Hollingsworth MA; Burchell J; Clausen H Glycobiology; 2006 Feb; 16(2):96-107. PubMed ID: 16207894 [TBL] [Abstract][Full Text] [Related]
40. Chemoenzymatic synthesis of mono- and di-fluorinated Thomsen-Friedenreich (T) antigens and their sialylated derivatives. Yan J; Chen X; Wang F; Cao H Org Biomol Chem; 2013 Feb; 11(5):842-8. PubMed ID: 23241945 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]