These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

109 related articles for article (PubMed ID: 11697980)

  • 41. Kinetics of photoinduced RNA refolding by real-time NMR spectroscopy.
    Wenter P; Fürtig B; Hainard A; Schwalbe H; Pitsch S
    Angew Chem Int Ed Engl; 2005 Apr; 44(17):2600-3. PubMed ID: 15782371
    [No Abstract]   [Full Text] [Related]  

  • 42. The structure of a TNA-TNA complex in solution: NMR study of the octamer duplex derived from alpha-(L)-threofuranosyl-(3'-2')-CGAATTCG.
    Ebert MO; Mang C; Krishnamurthy R; Eschenmoser A; Jaun B
    J Am Chem Soc; 2008 Nov; 130(45):15105-15. PubMed ID: 18928287
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Triplex formation with alpha-L-LNA (alpha-L-ribo-configured locked nucleic acid).
    Kumar N; Nielsen KE; Maiti S; Petersen M
    J Am Chem Soc; 2006 Jan; 128(1):14-5. PubMed ID: 16390098
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Cross-correlated relaxation for measurement of angles between tensorial interactions.
    Schwalbe H; Carlomagno T; Hennig M; Junker J; Reif B; Richter C; Griesinger C
    Methods Enzymol; 2001; 338():35-81. PubMed ID: 11460558
    [No Abstract]   [Full Text] [Related]  

  • 45. An expanding view of aminoglycoside-nucleic acid recognition.
    Willis B; Arya DP
    Adv Carbohydr Chem Biochem; 2006; 60():251-302. PubMed ID: 16750445
    [No Abstract]   [Full Text] [Related]  

  • 46. A caged uridine for the selective preparation of an RNA fold and determination of its refolding kinetics by real-time NMR.
    Wenter P; Fürtig B; Hainard A; Schwalbe H; Pitsch S
    Chembiochem; 2006 Mar; 7(3):417-20. PubMed ID: 16453349
    [No Abstract]   [Full Text] [Related]  

  • 47. GFT projection NMR for efficient (1)H/ (13)C sugar spin system identification in nucleic acids.
    Atreya HS; Sathyamoorthy B; Jaipuria G; Beaumont V; Varani G; Szyperski T
    J Biomol NMR; 2012 Dec; 54(4):337-42. PubMed ID: 23192291
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Phosphorus-31 transverse relaxation rate measurements by NMR spectroscopy: insight into conformational exchange along the nucleic acid backbone.
    Catoire LJ
    J Biomol NMR; 2004 Feb; 28(2):179-84. PubMed ID: 14755162
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Chemical shift tensors of protonated base carbons in helical RNA and DNA from NMR relaxation and liquid crystal measurements.
    Ying J; Grishaev A; Bryce DL; Bax A
    J Am Chem Soc; 2006 Sep; 128(35):11443-54. PubMed ID: 16939267
    [TBL] [Abstract][Full Text] [Related]  

  • 50. NMR solution structure of the N3' --> P5' phosphoramidate duplex d(CGCGAATTCGCG)2 by the iterative relaxation matrix approach.
    Ding D; Gryaznov SM; Wilson WD
    Biochemistry; 1998 Sep; 37(35):12082-93. PubMed ID: 9724520
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Frequency-switched single-transition cross-polarization: a tool for selective experiments in biomolecular NMR.
    Ferrage F; Eykyn TR; Bodenhausen G
    Chemphyschem; 2004 Jan; 5(1):76-84. PubMed ID: 14999846
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Direct assignment of the absolute configuration of a distinct class of deoxyribonucleoside cyclic N-acylphosphoramidites at phosphorus by M-GOESY nuclear magnetic resonance spectroscopy.
    Wilk A; Grajkowski A; Bull TE; Dixon AM; Freedberg DI; Beaucage SL
    J Am Chem Soc; 2002 Feb; 124(7):1180-1. PubMed ID: 11841281
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Peptide nucleic acids and their potential applications in biotechnology.
    Buchardt O; Egholm M; Berg RH; Nielsen PE
    Trends Biotechnol; 1993 Sep; 11(9):384-6. PubMed ID: 7691090
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Structural characterization of PNA-DNA duplexes by NMR. Evidence for DNA in a B-like conformation.
    Leijon M; Gräslund A; Nielsen PE; Buchardt O; Nordén B; Kristensen SM; Eriksson M
    Biochemistry; 1994 Aug; 33(33):9820-5. PubMed ID: 8060989
    [TBL] [Abstract][Full Text] [Related]  

  • 55. NMR probing of invisible excited states using selectively labeled RNAs.
    LeBlanc RM; Longhini AP; Tugarinov V; Dayie TK
    J Biomol NMR; 2018 Jul; 71(3):165-172. PubMed ID: 29858959
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Using maximum likelihood spectral deconvolution in multidimensional nuclear magnetic resonance.
    Borer PN; Levy GC
    Methods Enzymol; 1994; 239():257-88. PubMed ID: 7530319
    [No Abstract]   [Full Text] [Related]  

  • 57. Refinement of local and long-range structural order in theophylline-binding RNA using (13)C-(1)H residual dipolar couplings and restrained molecular dynamics.
    Sibille N; Pardi A; Simorre JP; Blackledge M
    J Am Chem Soc; 2001 Dec; 123(49):12135-46. PubMed ID: 11734011
    [TBL] [Abstract][Full Text] [Related]  

  • 58. A maximum likelihood method for determining D(a)(PQ) and R for sets of dipolar coupling data.
    Warren JJ; Moore PB
    J Magn Reson; 2001 Apr; 149(2):271-5. PubMed ID: 11318629
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Experimental and theoretical determination of nucleic acid magnetic susceptibility: importance for the study of dynamics by field-induced residual dipolar couplings.
    Bryce DL; Boisbouvier J; Bax A
    J Am Chem Soc; 2004 Sep; 126(35):10820-1. PubMed ID: 15339148
    [TBL] [Abstract][Full Text] [Related]  

  • 60. MAS solid state NMR of RNAs with multiple receivers.
    Herbst C; Riedel K; Ihle Y; Leppert J; Ohlenschläger O; Görlach M; Ramachandran R
    J Biomol NMR; 2008 Jul; 41(3):121-5. PubMed ID: 18516685
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.