These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 11698259)

  • 1. GSH depletion, K-Cl cotransport, and regulatory volume decrease in high-K/high-GSH dog red blood cells.
    Fujise H; Higa K; Kanemaru T; Fukuda M; Adragna NC; Lauf PK
    Am J Physiol Cell Physiol; 2001 Dec; 281(6):C2003-9. PubMed ID: 11698259
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Oxidative activation of K-Cl cotransport by diamide in erythrocytes from humans with red cell disorders, and from several other mammalian species.
    Adragna NC; Lauf PK
    J Membr Biol; 1997 Feb; 155(3):207-17. PubMed ID: 9050444
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Thiol-dependent K:Cl transport in sheep red cells: VIII. Activation through metabolically and chemically reversible oxidation by diamide.
    Lauf PK
    J Membr Biol; 1988; 101(2):179-88. PubMed ID: 3367366
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Role of nitrite, a nitric oxide derivative, in K-Cl cotransport activation of low-potassium sheep red blood cells.
    Adragna NC; Lauf PK
    J Membr Biol; 1998 Dec; 166(3):157-67. PubMed ID: 9843589
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Glutathione removal reveals kinases as common targets for K-Cl cotransport stimulation in sheep erythrocytes.
    Lauf PK; Adragna NC; Agar NS
    Am J Physiol; 1995 Jul; 269(1 Pt 1):C234-41. PubMed ID: 7631750
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Incorporation of 3H-N-ethylmaleimide into sheep red cell membrane thiol groups following protection by diamide-induced oxidation.
    Lauf PK
    Mol Cell Biochem; 1992 Sep; 114(1-2):13-20. PubMed ID: 1461256
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Contrasting effects of thiol-modulating agents on endothelial NO bioactivity.
    Huang A; Xiao H; Samii JM; Vita JA; Keaney JF
    Am J Physiol Cell Physiol; 2001 Aug; 281(2):C719-25. PubMed ID: 11443071
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Kinetic comparison of ouabain-resistant K:Cl fluxes (K:Cl [Co]-transport) stimulated in sheep erythrocytes by membrane thiol oxidation and alkylation.
    Lauf PK
    Mol Cell Biochem; 1988; 82(1-2):97-106. PubMed ID: 3185522
    [TBL] [Abstract][Full Text] [Related]  

  • 9. K(+)-Cl- cotransport and volume regulation in the light and the dense fraction of high-K+ dog red blood cells.
    Fujise H; Abe K; Kamimura M; Ochiai H
    Am J Physiol; 1997 Sep; 273(3 Pt 2):R991-8. PubMed ID: 9321878
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Regulation of K-Cl cotransport: from function to genes.
    Adragna NC; Di Fulvio M; Lauf PK
    J Membr Biol; 2004 Oct; 201(3):109-37. PubMed ID: 15711773
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of 1-chloro-2,4-dinitrobenzene on K+ transport in normal and sickle human red blood cells.
    Muzyamba MC; Gibson JS
    J Physiol; 2003 Mar; 547(Pt 3):903-11. PubMed ID: 12576491
    [TBL] [Abstract][Full Text] [Related]  

  • 12. K-Cl cotransport: properties and molecular mechanism.
    Lauf PK; Adragna NC
    Cell Physiol Biochem; 2000; 10(5-6):341-54. PubMed ID: 11125215
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparison of K-Cl cotransport expression in high and low K dog erythrocytes.
    Ochiai H; Higa K; Hisamatsu S; Fujise H
    Exp Anim; 2006 Jan; 55(1):57-63. PubMed ID: 16508213
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Lithium and protein kinase C modulators regulate swelling-activated K-Cl cotransport and reveal a complete phosphatidylinositol cycle in low K sheep erythrocytes.
    Ferrell CM; Lauf PK; Wilson BA; Adragna NC
    J Membr Biol; 2000 Sep; 177(1):81-93. PubMed ID: 10960155
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Functional evidence for a pH sensor of erythrocyte K-Cl cotransport through inhibition by internal protons and diethylpyrocarbonate.
    Lauf PK; Adragna NC
    Cell Physiol Biochem; 1998; 8(1-2):46-60. PubMed ID: 9547019
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Chemical and pathological oxidative influences on band 3 protein anion-exchanger.
    Teti D; Crupi M; Busá M; Valenti A; Loddo S; Mondello M; Romano L
    Cell Physiol Biochem; 2005; 16(1-3):77-86. PubMed ID: 16121036
    [TBL] [Abstract][Full Text] [Related]  

  • 17. K:Cl cotransport: emerging molecular aspects of a ouabain-resistant, volume-responsive transport system in red blood cells.
    Lauf PK
    Ren Physiol Biochem; 1988; 11(3-5):248-59. PubMed ID: 3074401
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evidence for the involvement of K+ channels and K(+)-Cl- cotransport in the regulatory volume decrease of newborn rat cardiomyocytes.
    Taouil K; Hannaert P
    Pflugers Arch; 1999 Dec; 439(1-2):56-66. PubMed ID: 10651001
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Thiol-dependent passive K: Cl transport in sheep red blood cells: X. A hydroxylamine-oxidation induced K: Cl flux blocked by diethylpyrocarbonate.
    Lauf PK
    J Membr Biol; 1990 Nov; 118(2):153-9. PubMed ID: 2266546
    [TBL] [Abstract][Full Text] [Related]  

  • 20. K-Cl cotransport: immunohistochemical and ion flux studies in human embryonic kidney (HEK293) cells transfected with full-length and C-terminal-domain-truncated KCC1 cDNAs.
    Lauf PK; Zhang J; Gagnon KB; Delpire E; Fyffe RE; Adragna NC
    Cell Physiol Biochem; 2001; 11(3):143-60. PubMed ID: 11410710
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.