BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

172 related articles for article (PubMed ID: 11698397)

  • 1. Thiol oxidase activity of copper, zinc superoxide dismutase.
    Winterbourn CC; Peskin AV; Parsons-Mair HN
    J Biol Chem; 2002 Jan; 277(3):1906-11. PubMed ID: 11698397
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Role of Cu/Zn-superoxide dismutase in xenobiotic activation. I. Chemical reactions involved in the Cu/Zn-superoxide dismutase-accelerated oxidation of the benzene metabolite 1,4-hydroquinone.
    Li Y; Kuppusamy P; Zweier JL; Trush MA
    Mol Pharmacol; 1996 Mar; 49(3):404-11. PubMed ID: 8643079
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Role of Cu/Zn-superoxide dismutase in xenobiotic activation. II. Biological effects resulting from the Cu/Zn-superoxide dismutase-accelerated oxidation of the benzene metabolite 1,4-hydroquinone.
    Li Y; Kuppusamy P; Zweir JL; Trush MA
    Mol Pharmacol; 1996 Mar; 49(3):412-21. PubMed ID: 8643080
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Thiol-dependent metal-catalyzed oxidation of copper, zinc superoxide dismutase.
    Kwon OJ; Lee SM; Floyd RA; Park JW
    Biochim Biophys Acta; 1998 Sep; 1387(1-2):249-56. PubMed ID: 9748611
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Thiols as myeloperoxidase-oxidase substrates.
    Svensson BE
    Biochem J; 1988 Jul; 253(2):441-9. PubMed ID: 2845919
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Factors influencing the oxidation of cysteamine and other thiols: implications for hyperthermic sensitization and radiation protection.
    Biaglow JE; Issels RW; Gerweck LE; Varnes ME; Jacobson B; Mitchell JB; Russo A
    Radiat Res; 1984 Nov; 100(2):298-312. PubMed ID: 6093188
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Inhibition of copper-catalyzed cysteine oxidation by nanomolar concentrations of iron salts.
    Munday R; Munday CM; Winterbourn CC
    Free Radic Biol Med; 2004 Mar; 36(6):757-64. PubMed ID: 14990354
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Oxidation of cysteine and homocysteine by bovine albumin.
    Gabaldon M
    Arch Biochem Biophys; 2004 Nov; 431(2):178-88. PubMed ID: 15488466
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Reactivity of biologically important thiol compounds with superoxide and hydrogen peroxide.
    Winterbourn CC; Metodiewa D
    Free Radic Biol Med; 1999 Aug; 27(3-4):322-8. PubMed ID: 10468205
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Oxidation of histidine residues in copper-zinc superoxide dismutase by bicarbonate-stimulated peroxidase and thiol oxidase activities: pulse EPR and NMR studies.
    Chandran K; McCracken J; Peterson FC; Antholine WE; Volkman BF; Kalyanaraman B
    Biochemistry; 2010 Dec; 49(50):10616-22. PubMed ID: 21038859
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Binding of polyaminocarboxylate chelators to the active-site copper inhibits the GSNO-reductase activity but not the superoxide dismutase activity of Cu,Zn-superoxide dismutase.
    Ye M; English AM
    Biochemistry; 2006 Oct; 45(42):12723-32. PubMed ID: 17042490
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A facilitated electron transfer of copper--zinc superoxide dismutase (SOD) based on a cysteine-bridged SOD electrode.
    Tian Y; Shioda M; Kasahara S; Okajima T; Mao L; Hisabori T; Ohsaka T
    Biochim Biophys Acta; 2002 Jan; 1569(1-3):151-8. PubMed ID: 11853969
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Autoxidation of naphthohydroquinones: effects of metals, chelating agents, and superoxide dismutase.
    Munday R
    Free Radic Biol Med; 1997; 22(4):689-95. PubMed ID: 9013131
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Copper,zinc superoxide dismutase as a univalent NO(-) oxidoreductase and as a dichlorofluorescin peroxidase.
    Liochev SI; Fridovich I
    J Biol Chem; 2001 Sep; 276(38):35253-7. PubMed ID: 11461912
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Hydrogen peroxide damages the zinc-binding site of zinc-deficient Cu,Zn superoxide dismutase.
    Sampson JB; Beckman JS
    Arch Biochem Biophys; 2001 Aug; 392(1):8-13. PubMed ID: 11469788
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Albumin oxidation to diverse radicals by the peroxidase activity of Cu,Zn-superoxide dismutase in the presence of bicarbonate or nitrite: diffusible radicals produce cysteinyl and solvent-exposed and -unexposed tyrosyl radicals.
    Bonini MG; Fernandes DC; Augusto O
    Biochemistry; 2004 Jan; 43(2):344-51. PubMed ID: 14717588
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Superoxide dismutase undergoes proteolysis and fragmentation following oxidative modification and inactivation.
    Salo DC; Pacifici RE; Lin SW; Giulivi C; Davies KJ
    J Biol Chem; 1990 Jul; 265(20):11919-27. PubMed ID: 2195028
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Reactivity of hypotaurine and cysteine sulfinic acid toward carbonate radical anion and nitrogen dioxide as explored by the peroxidase activity of Cu,Zn superoxide dismutase and by pulse radiolysis.
    Baseggio Conrado A; D'Angelantonio M; Torreggiani A; Pecci L; Fontana M
    Free Radic Res; 2014 Nov; 48(11):1300-10. PubMed ID: 25156684
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Role of cytosolic superoxide dismutase as a stimulator in anthranilamide hydroxylation by a microsomal monooxygenase system in rat liver.
    Ohta Y; Ishiguro I; Naito J; Shinohara R
    J Biochem; 1984 Nov; 96(5):1323-36. PubMed ID: 6441802
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Physiological thiol compounds exert pro- and anti-oxidant effects, respectively, on iron- and copper-dependent oxidation of human low-density lipoprotein.
    Lynch SM; Frei B
    Biochim Biophys Acta; 1997 Apr; 1345(2):215-21. PubMed ID: 9106501
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.