These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
4. Dynamics and reproducibility of a moderately complex sensory-motor response in the medicinal leech. Garcia-Perez E; Zoccolan D; Pinato G; Torre V J Neurophysiol; 2004 Sep; 92(3):1783-95. PubMed ID: 15115783 [TBL] [Abstract][Full Text] [Related]
5. Statistical independence and neural computation in the leech ganglion. Pinato G; Battiston S; Torre V Biol Cybern; 2000 Aug; 83(2):119-30. PubMed ID: 10966051 [TBL] [Abstract][Full Text] [Related]
6. Analysis and modeling of the multisegmental coordination of shortening behavior in the medicinal leech. I. Motor output pattern. Wittenberg G; Kristan WB J Neurophysiol; 1992 Nov; 68(5):1683-92. PubMed ID: 1479438 [TBL] [Abstract][Full Text] [Related]
7. Analysis and modeling of the multisegmental coordination of shortening behavior in the medicinal leech. II. Role of identified interneurons. Wittenberg G; Kristan WB J Neurophysiol; 1992 Nov; 68(5):1693-707. PubMed ID: 1479439 [TBL] [Abstract][Full Text] [Related]
8. The neuronal basis of the behavioral choice between swimming and shortening in the leech: control is not selectively exercised at higher circuit levels. Shaw BK; Kristan WB J Neurosci; 1997 Jan; 17(2):786-95. PubMed ID: 8987800 [TBL] [Abstract][Full Text] [Related]
9. Feedback Signal from Motoneurons Influences a Rhythmic Pattern Generator. Rotstein HG; Schneider E; Szczupak L J Neurosci; 2017 Sep; 37(38):9149-9159. PubMed ID: 28821650 [TBL] [Abstract][Full Text] [Related]
10. Inhibitory connections between motor neurons modify a centrally generated motor pattern in the leech nervous system. Granzow B; Kristan WB Brain Res; 1986 Mar; 369(1-2):321-5. PubMed ID: 3697747 [TBL] [Abstract][Full Text] [Related]
11. Modulation of mechanosensory responses by motoneurons that regulate skin surface topology in the leech. Rodriguez MJ; Iscla IR; Szczupak L J Neurophysiol; 2004 May; 91(5):2366-75. PubMed ID: 15069103 [TBL] [Abstract][Full Text] [Related]
13. Temporal correlation between neuronal tail ganglion activity and locomotion in the leech, Hirudo medicinalis. Baader AP; Bächtold D Invert Neurosci; 1997 Mar; 2(4):245-51. PubMed ID: 9460234 [TBL] [Abstract][Full Text] [Related]
14. Distributed processing of sensory information in the leech. I. Input-output relations of the local bending reflex. Lockery SR; Kristan WB J Neurosci; 1990 Jun; 10(6):1811-5. PubMed ID: 2355251 [TBL] [Abstract][Full Text] [Related]
15. The use of dendrograms to describe the electrical activity of motoneurons underlying behaviors in leeches. Juárez-Hernández LJ; Bisson G; Torre V Front Integr Neurosci; 2013; 7():69. PubMed ID: 24098274 [TBL] [Abstract][Full Text] [Related]
16. Activation of type-identified motor units during centrally evoked contractions in the cat medial gastrocnemius muscle. II. Motoneuron firing-rate modulation. Tansey KE; Botterman BR J Neurophysiol; 1996 Jan; 75(1):38-50. PubMed ID: 8822540 [TBL] [Abstract][Full Text] [Related]
17. Segmental differences in pathways between crayfish giant axons and fast flexor motoneurons. Miller LA; Hagiwara G; Wine JJ J Neurophysiol; 1985 Jan; 53(1):252-65. PubMed ID: 3973660 [TBL] [Abstract][Full Text] [Related]
18. Excitatory and inhibitory motoneurons in the central nervous system of the leech. Stuart AE Science; 1969 Aug; 165(3895):817-9. PubMed ID: 5796558 [TBL] [Abstract][Full Text] [Related]
19. Neural control of heartbeat in the leech and in some other invertebrates. Stent GS; Thompson WJ; Calabrese RL Physiol Rev; 1979 Jan; 59(1):101-36. PubMed ID: 220645 [TBL] [Abstract][Full Text] [Related]
20. Effect of a nonspiking neuron on motor patterns of the leech. Rodriguez MJ; Alvarez RJ; Szczupak L J Neurophysiol; 2012 Apr; 107(7):1917-24. PubMed ID: 22236711 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]