These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

458 related articles for article (PubMed ID: 11698546)

  • 61. Gephyrin is critical for glycine receptor clustering but not for the formation of functional GABAergic synapses in hippocampal neurons.
    Lévi S; Logan SM; Tovar KR; Craig AM
    J Neurosci; 2004 Jan; 24(1):207-17. PubMed ID: 14715953
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Postnatal development of inhibitory synaptic transmission in the rostral nucleus of the solitary tract.
    Grabauskas G; Bradley RM
    J Neurophysiol; 2001 May; 85(5):2203-12. PubMed ID: 11353035
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Shunting of excitatory input to dentate gyrus granule cells by a depolarizing GABAA receptor-mediated postsynaptic conductance.
    Staley KJ; Mody I
    J Neurophysiol; 1992 Jul; 68(1):197-212. PubMed ID: 1381418
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Inhibitory transmission in locus coeruleus neurons expressing GABAA receptor epsilon subunit has a number of unique properties.
    Belujon P; Baufreton J; Grandoso L; Boué-Grabot E; Batten TF; Ugedo L; Garret M; Taupignon AI
    J Neurophysiol; 2009 Oct; 102(4):2312-25. PubMed ID: 19625540
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Hippocampal CA1 lacunosum-moleculare interneurons: modulation of monosynaptic GABAergic IPSCs by presynaptic GABAB receptors.
    Khazipov R; Congar P; Ben-Ari Y
    J Neurophysiol; 1995 Nov; 74(5):2126-37. PubMed ID: 8592201
    [TBL] [Abstract][Full Text] [Related]  

  • 66. The nonuniform distribution of the GABA(A) receptor alpha 1 subunit influences inhibitory synaptic transmission to motoneurons within a motor nucleus.
    O'Brien JA; Berger AJ
    J Neurosci; 2001 Nov; 21(21):8482-94. PubMed ID: 11606637
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Glycinergic mIPSCs in mouse and rat brainstem auditory nuclei: modulation by ruthenium red and the role of calcium stores.
    Lim R; Oleskevich S; Few AP; Leao RN; Walmsley B
    J Physiol; 2003 Feb; 546(Pt 3):691-9. PubMed ID: 12562997
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Activation of GABA(A) receptors in subthalamic neurons in vitro: properties of native receptors and inhibition mechanisms.
    Baufreton J; Garret M; Dovero S; Dufy B; Bioulac B; Taupignon A
    J Neurophysiol; 2001 Jul; 86(1):75-85. PubMed ID: 11431489
    [TBL] [Abstract][Full Text] [Related]  

  • 69. GABA synapses and the rapid loss of inhibition to dentate gyrus granule cells after brief perforant-path stimulation.
    Naylor DE; Wasterlain CG
    Epilepsia; 2005; 46 Suppl 5():142-7. PubMed ID: 15987269
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Distinct mechanisms of presynaptic inhibition at GABAergic synapses of the rat substantia nigra pars compacta.
    Giustizieri M; Bernardi G; Mercuri NB; Berretta N
    J Neurophysiol; 2005 Sep; 94(3):1992-2003. PubMed ID: 15944237
    [TBL] [Abstract][Full Text] [Related]  

  • 71. GABAC receptors in the rat superior colliculus and pretectum participate in synaptic neurotransmission.
    Boller M; Schmidt M
    J Neurophysiol; 2003 Apr; 89(4):2035-45. PubMed ID: 12686577
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Cajal Retzius cells in the mouse neocortex receive two types of pre- and postsynaptically distinct GABAergic inputs.
    Kirmse K; Dvorzhak A; Henneberger C; Grantyn R; Kirischuk S
    J Physiol; 2007 Dec; 585(Pt 3):881-95. PubMed ID: 17962325
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Whole-cell and single-channel recordings of GABA-gated currents in cultured chick cerebral neurons.
    Weiss DS; Barnes EM; Hablitz JJ
    J Neurophysiol; 1988 Feb; 59(2):495-513. PubMed ID: 2450972
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Rat hippocampal neurons maintain their own GABAergic synaptic transmission in culture.
    Melnick IV; Chvanov MA; Belan PV
    Neurosci Lett; 1999 Mar; 262(3):151-4. PubMed ID: 10218878
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Pharmacology of GABA(A) receptors of retinal dopaminergic neurons.
    Feigenspan A; Gustincich S; Raviola E
    J Neurophysiol; 2000 Oct; 84(4):1697-707. PubMed ID: 11024062
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Facilitation of miniature GABAergic currents by ruthenium red in neonatal rat hippocampal neurons.
    Sciancalepore M; Savić N; Györi J; Cherubini E
    J Neurophysiol; 1998 Nov; 80(5):2316-22. PubMed ID: 9819245
    [TBL] [Abstract][Full Text] [Related]  

  • 77. A novel GABA receptor on bipolar cell terminals in the tiger salamander retina.
    Lukasiewicz PD; Maple BR; Werblin FS
    J Neurosci; 1994 Mar; 14(3 Pt 1):1202-12. PubMed ID: 8120620
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Physiology, pharmacology, and topography of cholinergic neocortical oscillations in vitro.
    Lukatch HS; MacIver MB
    J Neurophysiol; 1997 May; 77(5):2427-45. PubMed ID: 9163368
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Suppression of neuronal hyperexcitability and associated delayed neuronal death by adenoviral expression of GABA(C) receptors.
    Cheng Q; Kulli JC; Yang J
    J Neurosci; 2001 May; 21(10):3419-28. PubMed ID: 11331372
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Zinc inhibits miniature GABAergic currents by allosteric modulation of GABAA receptor gating.
    Barberis A; Cherubini E; Mozrzymas JW
    J Neurosci; 2000 Dec; 20(23):8618-27. PubMed ID: 11102466
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 23.