These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

107 related articles for article (PubMed ID: 11699195)

  • 1. Conditional engagement of medial frontal cortex during responding under uncertain reinforcement in rats: a paradigm for subjective behavior.
    Nalwa V; Rao PS
    Int J Neurosci; 2001; 108(3-4):291-6. PubMed ID: 11699195
    [TBL] [Abstract][Full Text] [Related]  

  • 2. DRL responding under uncertain reinforcement in rats after medial frontal cortical lesions.
    Nalwa V; Rao PS
    Behav Brain Res; 1985 Sep; 17(1):73-6. PubMed ID: 4041223
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of medial frontal cortex lesions on DRL performance in rats.
    Finger S; Altemus KL; Green L; Wolf C; Miller J; Almli CR
    Physiol Behav; 1987; 41(4):387-9. PubMed ID: 3432390
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Role of the prefrontal cortex in the differentiation of directional instrumental reflexes in animals].
    Stepień I
    Acta Physiol Pol; 1975; 26(11):61-82. PubMed ID: 817570
    [No Abstract]   [Full Text] [Related]  

  • 5. [Some hypotheses concerning the functional organization of the prefrontal cortex. I. Preliminary remarks].
    Konorski J
    Acta Physiol Pol; 1975; 26(11):3-22. PubMed ID: 817569
    [No Abstract]   [Full Text] [Related]  

  • 6. Dopamine in the orbitofrontal cortex regulates operant responding under a progressive ratio of reinforcement in rats.
    Cetin T; Freudenberg F; Füchtemeier M; Koch M
    Neurosci Lett; 2004 Nov; 370(2-3):114-7. PubMed ID: 15488305
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Olfactory bulb removal and response suppression in rats.
    Thorne BM; McDougal Y; Topping JS
    Physiol Behav; 1976 Aug; 17(2):259-65. PubMed ID: 996164
    [No Abstract]   [Full Text] [Related]  

  • 8. [The individual organization of frontal-hippocampal networks during realization of different behavioral tasks].
    Merzhanova GKh; Dolbakian EE; Khokhlova VN
    Zh Vyssh Nerv Deiat Im I P Pavlova; 2004; 54(4):508-18. PubMed ID: 15481388
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of caudate and frontal lesions on retention and relearning of a DRL schedule.
    Schmaltz LW; Isaacson RL
    J Comp Physiol Psychol; 1968 Apr; 65(2):343-8. PubMed ID: 5668322
    [No Abstract]   [Full Text] [Related]  

  • 10. [The frontal-motor interneuronal interactions in cats realizing a free choice of reinforcement].
    Merzhanova GKh; Berg AI
    Zh Vyssh Nerv Deiat Im I P Pavlova; 1994; 44(6):954-62. PubMed ID: 7879449
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The nature of the medial wall deficit in the rat.
    Johnston VS; Hart M; Howell W
    Neuropsychologia; 1974 Oct; 12(4):497-504. PubMed ID: 4437745
    [No Abstract]   [Full Text] [Related]  

  • 12. Neurotoxic lesions of ventrolateral but not anteromedial neostriatum in rats impair differential reinforcement of low rates (DRL) performance.
    Dunnett SB; Iversen SD
    Behav Brain Res; 1982 Nov; 6(3):213-26. PubMed ID: 6816260
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Lateral, but not medial, frontal lesions impair fixed ratio performance in rats.
    Numan R; Grant KA
    Physiol Behav; 1980 Mar; 24(3):625-7. PubMed ID: 7375585
    [No Abstract]   [Full Text] [Related]  

  • 14. Dopamine in the prefrontal cortex regulates rats behavioral flexibility to changing reward value.
    Winter S; Dieckmann M; Schwabe K
    Behav Brain Res; 2009 Mar; 198(1):206-13. PubMed ID: 19041903
    [TBL] [Abstract][Full Text] [Related]  

  • 15. About bouts: A heterogeneous tandem schedule of reinforcement reveals dissociable components of operant behavior in Fischer rats.
    Daniels CW; Sanabria F
    J Exp Psychol Anim Learn Cogn; 2017 Jul; 43(3):280-294. PubMed ID: 29120215
    [TBL] [Abstract][Full Text] [Related]  

  • 16. DRL performance in the weanling rat: a comparison with adult subjects.
    Lejeune H; Jasselette P
    Physiol Behav; 1987; 40(3):271-8. PubMed ID: 3659142
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Differential effects of prefrontal cortex ablation in neonatal, juvenile, and young adult rats.
    Nonneman AJ; Corwin JV
    J Comp Physiol Psychol; 1981 Aug; 95(4):588-602. PubMed ID: 7053180
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Performance under temporal schedules by monkeys with partial ablations of prefontal cortex.
    Manning FJ
    Physiol Behav; 1973 Oct; 11(4):563-9. PubMed ID: 4200560
    [No Abstract]   [Full Text] [Related]  

  • 19. Alterations in DRH and DRL performance in rats developmentally exposed to an environmental PCB mixture.
    Sable HJ; Powers BE; Wang VC; Widholm JJ; Schantz SL
    Neurotoxicol Teratol; 2006; 28(5):548-56. PubMed ID: 16930942
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cortical evoked potentials and behavioral reactivity to photic stimuli in freely moving rats.
    Schwartzbaum JS; Kreinick CJ; Gustafson JW
    Brain Res; 1971 Apr; 27(2):295-307. PubMed ID: 5552173
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 6.