BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 11700044)

  • 21. On the action of botulinum neurotoxins A and E at cholinergic terminals.
    Washbourne P; Pellizzari R; Rossetto O; Bortoletto N; Tugnoli V; De Grandis D; Eleopra R; Montecucco C
    J Physiol Paris; 1998 Apr; 92(2):135-9. PubMed ID: 9782457
    [TBL] [Abstract][Full Text] [Related]  

  • 22. High Yield Preparation of Functionally Active Catalytic-Translocation Domain Module of Botulinum Neurotoxin Type A That Exhibits Uniquely Different Enzyme Kinetics.
    Dhaliwal HK; Thiruvanakarasu N; Kumar R; Patel K; Ambrin G; Cai S; Singh BR
    Protein J; 2017 Dec; 36(6):489-501. PubMed ID: 29030733
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Sequence homology and structural analysis of the clostridial neurotoxins.
    Lacy DB; Stevens RC
    J Mol Biol; 1999 Sep; 291(5):1091-104. PubMed ID: 10518945
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Botulinum neurotoxin serotype F: identification of substrate recognition requirements and development of inhibitors with low nanomolar affinity.
    Schmidt JJ; Stafford RG
    Biochemistry; 2005 Mar; 44(10):4067-73. PubMed ID: 15751983
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The HCC-domain of botulinum neurotoxins A and B exhibits a singular ganglioside binding site displaying serotype specific carbohydrate interaction.
    Rummel A; Mahrhold S; Bigalke H; Binz T
    Mol Microbiol; 2004 Feb; 51(3):631-43. PubMed ID: 14731268
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Comparison of the catalytic properties of the botulinum neurotoxin subtypes A1 and A5.
    Wang D; Krilich J; Pellett S; Baudys J; Tepp WH; Barr JR; Johnson EA; Kalb SR
    Biochim Biophys Acta; 2013 Dec; 1834(12):2722-8. PubMed ID: 24096023
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Interactions of a potent cyclic peptide inhibitor with the light chain of botulinum neurotoxin A: Insights from X-ray crystallography.
    Kumaran D; Adler M; Levit M; Krebs M; Sweeney R; Swaminathan S
    Bioorg Med Chem; 2015 Nov; 23(22):7264-73. PubMed ID: 26522088
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Molecular structures and functional relationships in clostridial neurotoxins.
    Swaminathan S
    FEBS J; 2011 Dec; 278(23):4467-85. PubMed ID: 21592305
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Identification and Characterization of Botulinum Neurotoxin A Substrate Binding Pockets and Their Re-Engineering for Human SNAP-23.
    Sikorra S; Litschko C; Müller C; Thiel N; Galli T; Eichner T; Binz T
    J Mol Biol; 2016 Jan; 428(2 Pt A):372-384. PubMed ID: 26523682
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Predictions of secondary structure and solvent accessibility of the light chain of the clostridial neurotoxins.
    Lebeda FJ; Olson MA
    J Nat Toxins; 1998 Oct; 7(3):227-38. PubMed ID: 9783261
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Engineering botulinum neurotoxin domains for activation by toxin light chain.
    Stancombe PR; Masuyer G; Birch-Machin I; Beard M; Foster KA; Chaddock JA; Acharya KR
    FEBS J; 2012 Feb; 279(3):515-23. PubMed ID: 22141396
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Tetanus and botulinum neurotoxins are zinc proteases specific for components of the neuroexocytosis apparatus.
    Schiavo G; Rossetto O; Benfenati F; Poulain B; Montecucco C
    Ann N Y Acad Sci; 1994 Mar; 710():65-75. PubMed ID: 7786341
    [TBL] [Abstract][Full Text] [Related]  

  • 33. [Structure and function of botulinum toxin].
    Fujii N
    Hokkaido Igaku Zasshi; 1995 Jan; 70(1):19-28. PubMed ID: 7744367
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Secondary structural predictions for the clostridial neurotoxins.
    Lebeda FJ; Olson MA
    Proteins; 1994 Dec; 20(4):293-300. PubMed ID: 7731948
    [TBL] [Abstract][Full Text] [Related]  

  • 35. [Tetanus and botulinum toxins are zinc metallopeptidases: molecular mechanisms and inhibition of their neurotoxicity].
    Cornille F; Roques BP
    J Soc Biol; 1999; 193(6):509-16. PubMed ID: 10783709
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The C-terminus of botulinum neurotoxin type A light chain contributes to solubility, catalysis, and stability.
    Baldwin MR; Bradshaw M; Johnson EA; Barbieri JT
    Protein Expr Purif; 2004 Sep; 37(1):187-95. PubMed ID: 15294297
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Immunological characterization of the subunits of type A botulinum neurotoxin and different components of its associated proteins.
    Kukreja R; Chang TW; Cai S; Lindo P; Riding S; Zhou Y; Ravichandran E; Singh BR
    Toxicon; 2009 May; 53(6):616-24. PubMed ID: 19673075
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Botulinum neurotoxin A selectively cleaves the synaptic protein SNAP-25.
    Blasi J; Chapman ER; Link E; Binz T; Yamasaki S; De Camilli P; Südhof TC; Niemann H; Jahn R
    Nature; 1993 Sep; 365(6442):160-3. PubMed ID: 8103915
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Botulinum neurotoxin serotype D attacks neurons via two carbohydrate-binding sites in a ganglioside-dependent manner.
    Strotmeier J; Lee K; Völker AK; Mahrhold S; Zong Y; Zeiser J; Zhou J; Pich A; Bigalke H; Binz T; Rummel A; Jin R
    Biochem J; 2010 Oct; 431(2):207-16. PubMed ID: 20704566
    [TBL] [Abstract][Full Text] [Related]  

  • 40. 6-Pyruvoyl tetrahydropterin synthase, an enzyme with a novel type of active site involving both zinc binding and an intersubunit catalytic triad motif; site-directed mutagenesis of the proposed active center, characterization of the metal binding site and modelling of substrate binding.
    Bürgisser DM; Thöny B; Redweik U; Hess D; Heizmann CW; Huber R; Nar H
    J Mol Biol; 1995 Oct; 253(2):358-69. PubMed ID: 7563095
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.