These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

215 related articles for article (PubMed ID: 11701529)

  • 1. In vivo near-infrared spectroscopy.
    Rolfe P
    Annu Rev Biomed Eng; 2000; 2():715-54. PubMed ID: 11701529
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Near-infrared spectroscopy in the fetus and neonate.
    Wolfberg AJ; du Plessis AJ
    Clin Perinatol; 2006 Sep; 33(3):707-28, viii. PubMed ID: 16950321
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Voxel-based measurement sensitivity of spatially resolved near-infrared spectroscopy in layered tissues.
    Niwayama M
    J Biomed Opt; 2018 Mar; 23(3):1-4. PubMed ID: 29524320
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Time domain functional NIRS imaging for human brain mapping.
    Torricelli A; Contini D; Pifferi A; Caffini M; Re R; Zucchelli L; Spinelli L
    Neuroimage; 2014 Jan; 85 Pt 1():28-50. PubMed ID: 23747285
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Time-resolved diffuse optical spectroscopy up to 1700 nm by means of a time-gated InGaAs/InP single-photon avalanche diode.
    Bargigia I; Tosi A; Bahgat Shehata A; Della Frera A; Farina A; Bassi A; Taroni P; Dalla Mora A; Zappa F; Cubeddu R; Pifferi A
    Appl Spectrosc; 2012 Aug; 66(8):944-50. PubMed ID: 22800436
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Near-infrared frequency domain system and fast inverse Monte Carlo algorithm for endoscopic measurement of tubular tissue.
    Zhao H; Zhou X; Fan Y; Gao F
    J Xray Sci Technol; 2011; 19(1):57-68. PubMed ID: 21422589
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Noninvasively measuring the hemodynamic effects of massage on skeletal muscle: a novel hybrid near-infrared diffuse optical instrument.
    Munk N; Symons B; Shang Y; Cheng R; Yu G
    J Bodyw Mov Ther; 2012 Jan; 16(1):22-8. PubMed ID: 22196423
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Diffuse optical imaging and spectroscopy for cancer.
    Xu RX; Povoski SP
    Expert Rev Med Devices; 2007 Jan; 4(1):83-95. PubMed ID: 17187474
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A review on continuous wave functional near-infrared spectroscopy and imaging instrumentation and methodology.
    Scholkmann F; Kleiser S; Metz AJ; Zimmermann R; Mata Pavia J; Wolf U; Wolf M
    Neuroimage; 2014 Jan; 85 Pt 1():6-27. PubMed ID: 23684868
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Use of mitochondrial inhibitors to demonstrate that cytochrome oxidase near-infrared spectroscopy can measure mitochondrial dysfunction noninvasively in the brain.
    Cooper CE; Cope M; Springett R; Amess PN; Penrice J; Tyszczuk L; Punwani S; Ordidge R; Wyatt J; Delpy DT
    J Cereb Blood Flow Metab; 1999 Jan; 19(1):27-38. PubMed ID: 9886352
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Depth profile of diffuse reflectance near-infrared spectroscopy for measurement of water content in skin.
    Arimoto H; Egawa M; Yamada Y
    Skin Res Technol; 2005 Feb; 11(1):27-35. PubMed ID: 15691256
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Alleviating the effects of light scattering in multivariate calibration of near-infrared spectra by path length distribution correction.
    Leger MN
    Appl Spectrosc; 2010 Mar; 64(3):245-54. PubMed ID: 20223057
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Finite-difference time-domain analysis of time-resolved reflectance from an adult head model composed of multilayered slabs with a nonscattering layer.
    Tanifuji T; Nishio N; Okimatsu K; Tabata S; Hashimoto Y
    Appl Opt; 2012 Feb; 51(4):429-38. PubMed ID: 22307112
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Noninvasive Monitoring of Deep Tissue Oxygenation in Buried Flaps by Time-Resolved Near-Infrared Spectroscopy in Pigs.
    Lartizien R; Planat-Chrétien A; Berger M; Henry M; Coll JL; Dot A; Bettega G
    Plast Reconstr Surg; 2020 Nov; 146(5):565e-577e. PubMed ID: 33141532
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Noninvasive in vivo monitoring of methemoglobin formation and reduction with broadband diffuse optical spectroscopy.
    Lee J; El-Abaddi N; Duke A; Cerussi AE; Brenner M; Tromberg BJ
    J Appl Physiol (1985); 2006 Feb; 100(2):615-22. PubMed ID: 16223982
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Multifrequency frequency-domain spectrometer for tissue analysis.
    Spichtig S; Hornung R; Brown DW; Haensse D; Wolf M
    Rev Sci Instrum; 2009 Feb; 80(2):024301. PubMed ID: 19256664
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Transabdominal fetal pulse oximetry with near-infrared spectroscopy.
    Vintzileos AM; Nioka S; Lake M; Li P; Luo Q; Chance B
    Am J Obstet Gynecol; 2005 Jan; 192(1):129-33. PubMed ID: 15672014
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [The principles and research status of noninvasive glucose detection based on near-infrared spectrum].
    Yang X; Ji Z; Yang L; Peng C
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2013 Feb; 30(1):204-7. PubMed ID: 23488165
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mapping the myoglobin concentration, oxygenation, and optical pathlength in heart ex vivo using near-infrared imaging.
    Gussakovsky E; Yang Y; Rendell J; Jilkina O; Kupriyanov V
    Anal Biochem; 2010 Dec; 407(1):120-7. PubMed ID: 20643093
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [The influence of probe geometry on the sensitivity of tissue oximeter using near infra-red spectroscopy].
    Wang F; Ding H; Lin F
    Guang Pu Xue Yu Guang Pu Fen Xi; 2000 Aug; 20(4):585-8. PubMed ID: 12945385
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.