These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

271 related articles for article (PubMed ID: 11701624)

  • 1. Gene family evolution and homology: genomics meets phylogenetics.
    Thornton JW; DeSalle R
    Annu Rev Genomics Hum Genet; 2000; 1():41-73. PubMed ID: 11701624
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Gene family phylogenetics: tracing protein evolution on trees.
    Thornton J
    EXS; 2002; (92):191-207. PubMed ID: 11924497
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A prescient evolutionary model for genesis, duplication and differentiation of MIR160 homologs in Brassicaceae.
    Singh S; Singh A
    Mol Genet Genomics; 2021 Jul; 296(4):985-1003. PubMed ID: 34052911
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Placing paleopolyploidy in relation to taxon divergence: a phylogenetic analysis in legumes using 39 gene families.
    Pfeil BE; Schlueter JA; Shoemaker RC; Doyle JJ
    Syst Biol; 2005 Jun; 54(3):441-54. PubMed ID: 16012110
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparative Genomics of NAC Transcriptional Factors in Angiosperms: Implications for the Adaptation and Diversification of Flowering Plants.
    Pereira-Santana A; Alcaraz LD; Castaño E; Sanchez-Calderon L; Sanchez-Teyer F; Rodriguez-Zapata L
    PLoS One; 2015; 10(11):e0141866. PubMed ID: 26569117
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Targeted sequencing for high-resolution evolutionary analyses following genome duplication in salmonid fish: Proof of concept for key components of the insulin-like growth factor axis.
    Lappin FM; Shaw RL; Macqueen DJ
    Mar Genomics; 2016 Dec; 30():15-26. PubMed ID: 27346185
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Inferring Orthology and Paralogy.
    Altenhoff AM; Glover NM; Dessimoz C
    Methods Mol Biol; 2019; 1910():149-175. PubMed ID: 31278664
    [TBL] [Abstract][Full Text] [Related]  

  • 8. MetaPhOrs 2.0: integrative, phylogeny-based inference of orthology and paralogy across the tree of life.
    Chorostecki U; Molina M; Pryszcz LP; Gabaldón T
    Nucleic Acids Res; 2020 Jul; 48(W1):W553-W557. PubMed ID: 32343307
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Foundations of the new phylogenetics].
    Pavlinov IIa
    Zh Obshch Biol; 2004; 65(4):334-66. PubMed ID: 15490579
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Shallow genomics, phylogenetics, and evolution in the family Drosophilidae.
    Zilversmit M; O'Grady P; Desalle R
    Pac Symp Biocomput; 2002; ():512-23. PubMed ID: 11928503
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Integrated pipeline for inferring the evolutionary history of a gene family embedded in the species tree: a case study on the STIMATE gene family.
    Song J; Zheng S; Nguyen N; Wang Y; Zhou Y; Lin K
    BMC Bioinformatics; 2017 Oct; 18(1):439. PubMed ID: 28974198
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A Comparative Genomic and Phylogenetic Analysis of the Origin and Evolution of the CCN Gene Family.
    Hu K; Tao Y; Li J; Liu Z; Zhu X; Wang Z
    Biomed Res Int; 2019; 2019():8620878. PubMed ID: 31321242
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The Adaptive Evolution Database (TAED): A New Release of a Database of Phylogenetically Indexed Gene Families from Chordates.
    Hermansen RA; Oswald BP; Knight S; Shank SD; Northover D; Korunes KL; Michel SN; Liberles DA
    J Mol Evol; 2017 Aug; 85(1-2):46-56. PubMed ID: 28795237
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Orthologs, paralogs and genome comparisons.
    Gogarten JP; Olendzenski L
    Curr Opin Genet Dev; 1999 Dec; 9(6):630-6. PubMed ID: 10607614
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Characterizing lineage-specific evolution and the processes driving genomic diversification in chordates.
    Northover DE; Shank SD; Liberles DA
    BMC Evol Biol; 2020 Feb; 20(1):24. PubMed ID: 32046633
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Genome duplication and gene-family evolution: the case of three OXPHOS gene families.
    De Grassi A; Lanave C; Saccone C
    Gene; 2008 Sep; 421(1-2):1-6. PubMed ID: 18573316
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Reconstructing histories of complex gene clusters on a phylogeny.
    Vinar T; Brejová B; Song G; Siepel A
    J Comput Biol; 2010 Sep; 17(9):1267-79. PubMed ID: 20874408
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comparative genomics of ParaHox clusters of teleost fishes: gene cluster breakup and the retention of gene sets following whole genome duplications.
    Siegel N; Hoegg S; Salzburger W; Braasch I; Meyer A
    BMC Genomics; 2007 Sep; 8():312. PubMed ID: 17822543
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Event inference in multidomain families with phylogenetic reconciliation.
    Stolzer M; Siewert K; Lai H; Xu M; Durand D
    BMC Bioinformatics; 2015; 16 Suppl 14(Suppl 14):S8. PubMed ID: 26451642
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Reconciling gene and genome duplication events: using multiple nuclear gene families to infer the phylogeny of the aquatic plant family Pontederiaceae.
    Ness RW; Graham SW; Barrett SC
    Mol Biol Evol; 2011 Nov; 28(11):3009-18. PubMed ID: 21633114
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.