BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 11702239)

  • 1. In vivo detection of cytokeratin filament network breakdown in cells treated with the phosphatase inhibitor okadaic acid.
    Strnad P; Windoffer R; Leube RE
    Cell Tissue Res; 2001 Nov; 306(2):277-93. PubMed ID: 11702239
    [TBL] [Abstract][Full Text] [Related]  

  • 2. De novo formation of cytokeratin filament networks originates from the cell cortex in A-431 cells.
    Windoffer R; Leube RE
    Cell Motil Cytoskeleton; 2001 Sep; 50(1):33-44. PubMed ID: 11746670
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Induction of rapid and reversible cytokeratin filament network remodeling by inhibition of tyrosine phosphatases.
    Strnad P; Windoffer R; Leube RE
    J Cell Sci; 2002 Nov; 115(Pt 21):4133-48. PubMed ID: 12356917
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Disruption of the cytokeratin cytoskeleton and inhibition of hepatocytic autophagy by okadaic acid.
    Blankson H; Holen I; Seglen PO
    Exp Cell Res; 1995 Jun; 218(2):522-30. PubMed ID: 7540986
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Aggregation and loss of cytokeratin filament networks inhibit golgi organization in liver-derived epithelial cell lines.
    Kumemura H; Harada M; Omary MB; Sakisaka S; Suganuma T; Namba M; Sata M
    Cell Motil Cytoskeleton; 2004 Jan; 57(1):37-52. PubMed ID: 14648556
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The keratin-filament cycle of assembly and disassembly.
    Kölsch A; Windoffer R; Würflinger T; Aach T; Leube RE
    J Cell Sci; 2010 Jul; 123(Pt 13):2266-72. PubMed ID: 20554896
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cytokeratin intermediate filament organisation and dynamics in the vegetal cortex of living Xenopus laevis oocytes and eggs.
    Clarke EJ; Allan VJ
    Cell Motil Cytoskeleton; 2003 Sep; 56(1):13-26. PubMed ID: 12905528
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Okadaic acid induces phosphorylation and translocation of myosin phosphatase target subunit 1 influencing myosin phosphorylation, stress fiber assembly and cell migration in HepG2 cells.
    Lontay B; Kiss A; Gergely P; Hartshorne DJ; Erdodi F
    Cell Signal; 2005 Oct; 17(10):1265-75. PubMed ID: 16038801
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Detection of cytokeratin dynamics by time-lapse fluorescence microscopy in living cells.
    Windoffer R; Leube RE
    J Cell Sci; 1999 Dec; 112 ( Pt 24)():4521-34. PubMed ID: 10574702
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Continual assembly of desmosomes within stable intercellular contacts of epithelial A-431 cells.
    Gloushankova NA; Wakatsuki T; Troyanovsky RB; Elson E; Troyanovsky SM
    Cell Tissue Res; 2003 Dec; 314(3):399-410. PubMed ID: 14564504
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Rho-kinase dependent organization of stress fibers and focal adhesions in cultured fibroblasts.
    Katoh K; Kano Y; Ookawara S
    Genes Cells; 2007 May; 12(5):623-38. PubMed ID: 17535253
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Periplakin-dependent re-organisation of keratin cytoskeleton and loss of collective migration in keratin-8-downregulated epithelial sheets.
    Long HA; Boczonadi V; McInroy L; Goldberg M; Määttä A
    J Cell Sci; 2006 Dec; 119(Pt 24):5147-59. PubMed ID: 17158917
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mechanisms of mallory body formation induced by okadaic acid in drug-primed mice.
    Yuan QX; Nagao Y; Gaal K; Hu B; French SW
    Exp Mol Pathol; 1998 Oct; 65(2):87-103. PubMed ID: 9828150
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Growth factor induced activation of Rho and Rac GTPases and actin cytoskeletal reorganization in human lens epithelial cells.
    Maddala R; Reddy VN; Epstein DL; Rao V
    Mol Vis; 2003 Jul; 9():329-36. PubMed ID: 12876554
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Induction of actin cytoskeleton rearrangement by methyl okadaate--comparison with okadaic acid.
    Vilariño N; Ares IR; Cagide E; Louzao MC; Vieytes MR; Yasumoto T; Botana LM
    FEBS J; 2008 Mar; 275(5):926-34. PubMed ID: 18215167
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Golgi-associated filament networks in duct epithelial cells of rabbit submandibular glands: immunohistochemical light and electron microscopic studies.
    Ogawa C; Iwatsuki H; Suda M; Sasaki K
    Histochem Cell Biol; 2002 Jul; 118(1):35-40. PubMed ID: 12122445
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Immunofluorescent localisation of cytokeratin antigens in mitotic HeLa cells using monoclonal antibodies.
    Turner BM; Ruane M
    Eur J Cell Biol; 1985 Jan; 36(1):48-57. PubMed ID: 2579815
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Signal analysis of total internal reflection fluorescent speckle microscopy (TIR-FSM) and wide-field epi-fluorescence FSM of the actin cytoskeleton and focal adhesions in living cells.
    Adams MC; Matov A; Yarar D; Gupton SL; Danuser G; Waterman-Storer CM
    J Microsc; 2004 Nov; 216(Pt 2):138-52. PubMed ID: 15516225
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of okadaic acid on integrins and structural proteins in BE(2)-M17 cells.
    Santaclara F; Lago J; Vieites JM; Cabado AG
    Arch Toxicol; 2005 Oct; 79(10):582-6. PubMed ID: 15937665
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mechanical forces alter zyxin unbinding kinetics within focal adhesions of living cells.
    Lele TP; Pendse J; Kumar S; Salanga M; Karavitis J; Ingber DE
    J Cell Physiol; 2006 Apr; 207(1):187-94. PubMed ID: 16288479
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.