BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

104 related articles for article (PubMed ID: 1170320)

  • 1. Uptake of orthophosphate by rabbit vagus nerve fibres.
    Anner B; Ferrero J; Jirounek P; Straub RW
    J Physiol; 1975 Jun; 247(3):759-71. PubMed ID: 1170320
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Sodium-dependent influx of orthophosphate in mammalian non-myelinated nerve.
    Anner B; Ferrero J; Jirounek P; Jones GJ; Salamin A; Straub RW
    J Physiol; 1976 Sep; 260(3):667-86. PubMed ID: 978572
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Uptake of adenosine and release of adenine derivatives in mammalian non-myelinated nerve fibres at rest and during activity.
    Maire JC; Medilanski J; Straub RW
    J Physiol; 1982 Feb; 323():589-602. PubMed ID: 7097586
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Efflux of inorganic phosphate from mammalian non-myelinated nerve fibres.
    Ferrero J; Jirounek P; Rouiller M; Straub RW
    J Physiol; 1978 Sep; 282():507-19. PubMed ID: 722557
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Release of inorganic phosphate during activity in mammalian non-myelinated nerve fibres.
    Maire JC; Straub RW
    J Physiol; 1980 Jul; 304():135-43. PubMed ID: 7441530
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Oxygen consumption and phosphate efflux in mammalian non-myelinated nerve fibres.
    Ritchie JM; Straub RW
    J Physiol; 1980 Jul; 304():109-21. PubMed ID: 7441528
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mode of orthophosphate uptake and ATP labeling by mammalian cells.
    Niehaus WG; Hammerstedt RH
    Biochim Biophys Acta; 1976 Sep; 443(3):515-24. PubMed ID: 9142
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The turnover of phosphorus compounds in crab muscle fibres.
    Caldwell PC; Walster GE
    J Physiol; 1975 Jun; 248(1):1-13. PubMed ID: 1151796
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Kinetics of nucleoside triphosphate cleavage and phosphate release steps by associated rabbit skeletal actomyosin, measured using a novel fluorescent probe for phosphate.
    White HD; Belknap B; Webb MR
    Biochemistry; 1997 Sep; 36(39):11828-36. PubMed ID: 9305974
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Increase in efflux of inorganic phosphate during electrical activity in small non-myelinated nerve fibres.
    Ritchie JM; Straub RW
    J Physiol; 1978 Jan; 274():539-48. PubMed ID: 625007
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Involvement of intracellular calcium in the phosphate efflux from mammalian nonmyelinated nerve fibers.
    Jirounek P; Vitus J; Jones GJ; Pralong WF; Straub RW
    J Membr Biol; 1984; 79(1):87-95. PubMed ID: 6429334
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Distribution and metabolic fate of adenosine nucleotides in the membrane of storage vesicles from bovine adrenal medulla.
    Taugner G; Wunderlich I; John F
    Naunyn Schmiedebergs Arch Pharmacol; 1979 Oct; 309(1):29-43. PubMed ID: 42849
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Influence of inorganic phosphate and pH on ATP utilization in fast and slow skeletal muscle fibers.
    Potma EJ; van Graas IA; Stienen GJ
    Biophys J; 1995 Dec; 69(6):2580-9. PubMed ID: 8599665
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Determination of inorganic phosphorus in the presence of phosphorylated compounds and applications to the study of phosphorus metabolism in the rabbit vagus nerve].
    Schorderet M
    Helv Physiol Pharmacol Acta; 1968; 26(2):CR 248-51. PubMed ID: 5697786
    [No Abstract]   [Full Text] [Related]  

  • 15. Phosphate efflux and oxygen consumption in small non-myelinated nerve fibres at rest and during activity.
    Ritchie JM; Straub RW
    J Physiol; 1979 Feb; 287():315-27. PubMed ID: 430413
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Phosphate free perfusion prevents washout of tissue creatine in Langendorff perfused rabbit heart.
    Gitomer WL; Franco-Cabrera BD; Storey CJ
    Biochem Int; 1992 Mar; 26(4):637-44. PubMed ID: 1610372
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of calcium and lanthanum on phosphate efflux from nonmyelinated nerve fibers.
    Jirounek P; Rouiller M; Jones GJ; Straub RW
    J Membr Biol; 1982; 65(1-2):125-30. PubMed ID: 7057456
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of the slow calcium-channel blocker verapamil on phosphatic metabolism of crystalline lens.
    Greiner JV; Glonek T
    Exp Eye Res; 1988 Feb; 46(2):139-48. PubMed ID: 3350061
    [TBL] [Abstract][Full Text] [Related]  

  • 19. TRANSPORT AND METABOLISM OF THIAMINE IN RAT BRAIN CORTEX IN VITRO.
    SHARMA SK; QUASTEL JH
    Biochem J; 1965 Mar; 94(3):790-800. PubMed ID: 14340073
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [The incorporation of labelled oxygen from water into the ATP-, creatine phosphate- and orthophosphate fraction of intact muscles during rest, tetanic stimulation and recovery. New methods of intracellular turnover measurement with the aid of O-18 labelled water and the associated activation of phosphate fractions containing O-18 after proton bombardment].
    FLECKENSTEIN A; GERLACH E; JANKE J
    Pflugers Arch Gesamte Physiol Menschen Tiere; 1960; 271():75-104. PubMed ID: 13823392
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 6.