These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

101 related articles for article (PubMed ID: 1170320)

  • 1. Uptake of orthophosphate by rabbit vagus nerve fibres.
    Anner B; Ferrero J; Jirounek P; Straub RW
    J Physiol; 1975 Jun; 247(3):759-71. PubMed ID: 1170320
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Sodium-dependent influx of orthophosphate in mammalian non-myelinated nerve.
    Anner B; Ferrero J; Jirounek P; Jones GJ; Salamin A; Straub RW
    J Physiol; 1976 Sep; 260(3):667-86. PubMed ID: 978572
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Uptake of adenosine and release of adenine derivatives in mammalian non-myelinated nerve fibres at rest and during activity.
    Maire JC; Medilanski J; Straub RW
    J Physiol; 1982 Feb; 323():589-602. PubMed ID: 7097586
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Efflux of inorganic phosphate from mammalian non-myelinated nerve fibres.
    Ferrero J; Jirounek P; Rouiller M; Straub RW
    J Physiol; 1978 Sep; 282():507-19. PubMed ID: 722557
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Release of inorganic phosphate during activity in mammalian non-myelinated nerve fibres.
    Maire JC; Straub RW
    J Physiol; 1980 Jul; 304():135-43. PubMed ID: 7441530
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Oxygen consumption and phosphate efflux in mammalian non-myelinated nerve fibres.
    Ritchie JM; Straub RW
    J Physiol; 1980 Jul; 304():109-21. PubMed ID: 7441528
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mode of orthophosphate uptake and ATP labeling by mammalian cells.
    Niehaus WG; Hammerstedt RH
    Biochim Biophys Acta; 1976 Sep; 443(3):515-24. PubMed ID: 9142
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The turnover of phosphorus compounds in crab muscle fibres.
    Caldwell PC; Walster GE
    J Physiol; 1975 Jun; 248(1):1-13. PubMed ID: 1151796
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Kinetics of nucleoside triphosphate cleavage and phosphate release steps by associated rabbit skeletal actomyosin, measured using a novel fluorescent probe for phosphate.
    White HD; Belknap B; Webb MR
    Biochemistry; 1997 Sep; 36(39):11828-36. PubMed ID: 9305974
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Increase in efflux of inorganic phosphate during electrical activity in small non-myelinated nerve fibres.
    Ritchie JM; Straub RW
    J Physiol; 1978 Jan; 274():539-48. PubMed ID: 625007
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Involvement of intracellular calcium in the phosphate efflux from mammalian nonmyelinated nerve fibers.
    Jirounek P; Vitus J; Jones GJ; Pralong WF; Straub RW
    J Membr Biol; 1984; 79(1):87-95. PubMed ID: 6429334
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Distribution and metabolic fate of adenosine nucleotides in the membrane of storage vesicles from bovine adrenal medulla.
    Taugner G; Wunderlich I; John F
    Naunyn Schmiedebergs Arch Pharmacol; 1979 Oct; 309(1):29-43. PubMed ID: 42849
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Influence of inorganic phosphate and pH on ATP utilization in fast and slow skeletal muscle fibers.
    Potma EJ; van Graas IA; Stienen GJ
    Biophys J; 1995 Dec; 69(6):2580-9. PubMed ID: 8599665
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Determination of inorganic phosphorus in the presence of phosphorylated compounds and applications to the study of phosphorus metabolism in the rabbit vagus nerve].
    Schorderet M
    Helv Physiol Pharmacol Acta; 1968; 26(2):CR 248-51. PubMed ID: 5697786
    [No Abstract]   [Full Text] [Related]  

  • 15. Phosphate efflux and oxygen consumption in small non-myelinated nerve fibres at rest and during activity.
    Ritchie JM; Straub RW
    J Physiol; 1979 Feb; 287():315-27. PubMed ID: 430413
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Phosphate free perfusion prevents washout of tissue creatine in Langendorff perfused rabbit heart.
    Gitomer WL; Franco-Cabrera BD; Storey CJ
    Biochem Int; 1992 Mar; 26(4):637-44. PubMed ID: 1610372
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of calcium and lanthanum on phosphate efflux from nonmyelinated nerve fibers.
    Jirounek P; Rouiller M; Jones GJ; Straub RW
    J Membr Biol; 1982; 65(1-2):125-30. PubMed ID: 7057456
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of the slow calcium-channel blocker verapamil on phosphatic metabolism of crystalline lens.
    Greiner JV; Glonek T
    Exp Eye Res; 1988 Feb; 46(2):139-48. PubMed ID: 3350061
    [TBL] [Abstract][Full Text] [Related]  

  • 19. TRANSPORT AND METABOLISM OF THIAMINE IN RAT BRAIN CORTEX IN VITRO.
    SHARMA SK; QUASTEL JH
    Biochem J; 1965 Mar; 94(3):790-800. PubMed ID: 14340073
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [The incorporation of labelled oxygen from water into the ATP-, creatine phosphate- and orthophosphate fraction of intact muscles during rest, tetanic stimulation and recovery. New methods of intracellular turnover measurement with the aid of O-18 labelled water and the associated activation of phosphate fractions containing O-18 after proton bombardment].
    FLECKENSTEIN A; GERLACH E; JANKE J
    Pflugers Arch Gesamte Physiol Menschen Tiere; 1960; 271():75-104. PubMed ID: 13823392
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 6.