BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

189 related articles for article (PubMed ID: 11703384)

  • 1. Pharmacotherapy of the ion transport defect in cystic fibrosis.
    Kunzelmann K; Mall M
    Clin Exp Pharmacol Physiol; 2001 Nov; 28(11):857-67. PubMed ID: 11703384
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Pharmacotherapy of the ion transport defect in cystic fibrosis: role of purinergic receptor agonists and other potential therapeutics.
    Kunzelmann K; Mall M
    Am J Respir Med; 2003; 2(4):299-309. PubMed ID: 14719996
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nitric oxide has no beneficial effects on ion transport defects in cystic fibrosis human nasal epithelium.
    Rückes-Nilges C; Lindemann H; Klimek T; Glanz H; Weber WM
    Pflugers Arch; 2000 Nov; 441(1):133-7. PubMed ID: 11205052
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Expression and function of Anoctamin 1/TMEM16A calcium-activated chloride channels in airways of in vivo mouse models for cystic fibrosis research.
    Hahn A; Salomon JJ; Leitz D; Feigenbutz D; Korsch L; Lisewski I; Schrimpf K; Millar-Büchner P; Mall MA; Frings S; Möhrlen F
    Pflugers Arch; 2018 Sep; 470(9):1335-1348. PubMed ID: 29860639
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Normalization of raised sodium absorption and raised calcium-mediated chloride secretion by adenovirus-mediated expression of cystic fibrosis transmembrane conductance regulator in primary human cystic fibrosis airway epithelial cells.
    Johnson LG; Boyles SE; Wilson J; Boucher RC
    J Clin Invest; 1995 Mar; 95(3):1377-82. PubMed ID: 7533790
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cl- transport by cystic fibrosis transmembrane conductance regulator (CFTR) contributes to the inhibition of epithelial Na+ channels (ENaCs) in Xenopus oocytes co-expressing CFTR and ENaC.
    Briel M; Greger R; Kunzelmann K
    J Physiol; 1998 May; 508 ( Pt 3)(Pt 3):825-36. PubMed ID: 9518736
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Modulation of Ca2+-activated Cl- secretion by basolateral K+ channels in human normal and cystic fibrosis airway epithelia.
    Mall M; Gonska T; Thomas J; Schreiber R; Seydewitz HH; Kuehr J; Brandis M; Kunzelmann K
    Pediatr Res; 2003 Apr; 53(4):608-18. PubMed ID: 12612194
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Loss of Cftr function exacerbates the phenotype of Na(+) hyperabsorption in murine airways.
    Livraghi-Butrico A; Kelly EJ; Wilkinson KJ; Rogers TD; Gilmore RC; Harkema JR; Randell SH; Boucher RC; O'Neal WK; Grubb BR
    Am J Physiol Lung Cell Mol Physiol; 2013 Apr; 304(7):L469-80. PubMed ID: 23377346
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Spiperone, identified through compound screening, activates calcium-dependent chloride secretion in the airway.
    Liang L; MacDonald K; Schwiebert EM; Zeitlin PL; Guggino WB
    Am J Physiol Cell Physiol; 2009 Jan; 296(1):C131-41. PubMed ID: 18987251
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Altered ion transport by thyroid epithelia from CFTR(-/-) pigs suggests mechanisms for hypothyroidism in cystic fibrosis.
    Li H; Ganta S; Fong P
    Exp Physiol; 2010 Dec; 95(12):1132-44. PubMed ID: 20729267
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Pharmacological treatment of the ion transport defect in cystic fibrosis.
    Roomans GM
    Expert Opin Investig Drugs; 2001 Jan; 10(1):1-19. PubMed ID: 11116277
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Role of K(V)LQT1 in cyclic adenosine monophosphate-mediated Cl(-) secretion in human airway epithelia.
    Mall M; Wissner A; Schreiber R; Kuehr J; Seydewitz HH; Brandis M; Greger R; Kunzelmann K
    Am J Respir Cell Mol Biol; 2000 Sep; 23(3):283-9. PubMed ID: 10970817
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Pharmacological approaches to correcting the ion transport defect in cystic fibrosis.
    Roomans GM
    Am J Respir Med; 2003; 2(5):413-31. PubMed ID: 14719993
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Potential difference measurements of ocular surface Na+ absorption analyzed using an electrokinetic model.
    Levin MH; Kim JK; Hu J; Verkman AS
    Invest Ophthalmol Vis Sci; 2006 Jan; 47(1):306-16. PubMed ID: 16384978
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Liquid movement across the surface epithelium of large airways.
    Chambers LA; Rollins BM; Tarran R
    Respir Physiol Neurobiol; 2007 Dec; 159(3):256-70. PubMed ID: 17692578
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The cystic fibrosis transmembrane regulator (CFTR) in the kidney.
    Morales MM; Falkenstein D; Lopes AG
    An Acad Bras Cienc; 2000 Sep; 72(3):399-406. PubMed ID: 11028104
    [TBL] [Abstract][Full Text] [Related]  

  • 17. SERCA pump inhibitors do not correct biosynthetic arrest of deltaF508 CFTR in cystic fibrosis.
    Grubb BR; Gabriel SE; Mengos A; Gentzsch M; Randell SH; Van Heeckeren AM; Knowles MR; Drumm ML; Riordan JR; Boucher RC
    Am J Respir Cell Mol Biol; 2006 Mar; 34(3):355-63. PubMed ID: 16284361
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Control of epithelial Na+ conductance by the cystic fibrosis transmembrane conductance regulator.
    Kunzelmann K; Schreiber R; Nitschke R; Mall M
    Pflugers Arch; 2000 Jun; 440(2):193-201. PubMed ID: 10898518
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Targeting ENaC as a Molecular Suspect in Cystic Fibrosis.
    Bangel-Ruland N; Tomczak K; Weber WM
    Curr Drug Targets; 2015; 16(9):951-7. PubMed ID: 25544019
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Na+ and Cl- conductances in airway epithelial cells: increased Na+ conductance in cystic fibrosis.
    Kunzelmann K; Kathöfer S; Greger R
    Pflugers Arch; 1995 Nov; 431(1):1-9. PubMed ID: 8584404
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.