BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 11704250)

  • 1. ATP-sensitive potassium channels mediate the effects of a peripheral injection of glucose on memory storage in an inhibitory avoidance task.
    Rashidy-Pour A
    Behav Brain Res; 2001 Nov; 126(1-2):43-8. PubMed ID: 11704250
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Influence of potassium channel modulators on morphine state-dependent memory of passive avoidance.
    Zarrindast MR; Jafari MR; Shafaghi B; Djahanguiri B
    Behav Pharmacol; 2004 Mar; 15(2):103-10. PubMed ID: 15096910
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Memory enhancement with posttraining intraventricular glucose injections in rats.
    Lee MK; Graham SN; Gold PE
    Behav Neurosci; 1988 Aug; 102(4):591-5. PubMed ID: 3166734
    [TBL] [Abstract][Full Text] [Related]  

  • 4. ATP-sensitive potassium channel blockade enhances spontaneous alternation performance in the rat: a potential mechanism for glucose-mediated memory enhancement.
    Stefani MR; Nicholson GM; Gold PE
    Neuroscience; 1999; 93(2):557-63. PubMed ID: 10465439
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Atypical effect of minoxidil sulphate on guinea pig airways.
    Buchheit KH; Hofmann A; Manley P; Pfannkuche HJ; Quast U
    Naunyn Schmiedebergs Arch Pharmacol; 2000 Apr; 361(4):418-24. PubMed ID: 10763857
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Influence of central administration ATP-dependent K+ channel on morphine state-dependent memory of passive avoidance.
    Zarrindast MR; Jafari MR; Ahmadi S; Djahanguiri B
    Eur J Pharmacol; 2004 Mar; 487(1-3):143-8. PubMed ID: 15033386
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Coadministration of glyburide and minoxidil, drugs with opposing effects on potassium channels.
    Stein CM; Brown N; Carlson MG; Campbell P; Wood AJ
    Clin Pharmacol Ther; 1997 Jun; 61(6):662-8. PubMed ID: 9209249
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Prolactin induced analgesia is dependent on ATP sensitive potassium channels.
    Shewade DG; Ramaswamy S
    Clin Exp Pharmacol Physiol; 1995 Sep; 22(9):635-6. PubMed ID: 8542676
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of ATP-sensitive potassium channel regulators on chloride channels in the sarcoplasmic reticulum vesicles from rabbit skeletal muscle.
    Kourie JI
    J Membr Biol; 1998 Jul; 164(1):47-58. PubMed ID: 9636243
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The locus coeruleus involves in consolidation and memory retrieval, but not in acquisition of inhibitory avoidance learning task.
    Khakpour-Taleghani B; Lashgari R; Aavani T; Haghparast A; Naderi N; Motamedi F
    Behav Brain Res; 2008 Jun; 189(2):257-62. PubMed ID: 18295357
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Epinephrine effects on memory are not dependent on hepatic glucose release.
    Gamaro GD; Denardin JD; Michalowski MB; Catelli D; Correa JB; Xavier MH; Dalmaz C
    Neurobiol Learn Mem; 1997 Nov; 68(3):221-9. PubMed ID: 9398585
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Adenosine 5'-triphosphate-sensitive potassium channel-mediated blood-brain tumor barrier permeability increase in a rat brain tumor model.
    Ningaraj NS; Rao MK; Black KL
    Cancer Res; 2003 Dec; 63(24):8899-911. PubMed ID: 14695207
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The role of ATP-sensitive potassium channels in neutrophil migration and plasma exudation.
    Da Silva-Santos JE; Santos-Silva MC; Cunha Fde Q; Assreuy J
    J Pharmacol Exp Ther; 2002 Mar; 300(3):946-51. PubMed ID: 11861802
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Memory-enhancing treatments do not reverse the impairment of inhibitory avoidance retention induced by NMDA receptor blockade.
    Roesler R; Vianna MR; de-Paris F; Quevedo J
    Neurobiol Learn Mem; 1999 Nov; 72(3):252-8. PubMed ID: 10536102
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Protection from ischaemic-reperfusion injury with adenosine pretreatment is reversed by inhibition of ATP sensitive potassium channels.
    Toombs CF; McGee DS; Johnston WE; Vinten-Johansen J
    Cardiovasc Res; 1993 Apr; 27(4):623-9. PubMed ID: 8324796
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cerebral blood flow during hemodilution and hypoxia in rats : role of ATP-sensitive potassium channels.
    Tomiyama Y; Brian JE; Todd MM
    Stroke; 1999 Sep; 30(9):1942-7; discussion 1947-8. PubMed ID: 10471448
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of inhibition of ATP-sensitive potassium channels on metabolic vasodilation in the human forearm.
    Farouque HM; Meredith IT
    Clin Sci (Lond); 2003 Jan; 104(1):39-46. PubMed ID: 12519086
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Role of ATP-sensitive potassium channels in normal and hypertension-associated pregnancy in rats.
    Lima R; Tardim JC; Barros ME; Boim MA
    Clin Exp Pharmacol Physiol; 2006 Sep; 33(9):780-6. PubMed ID: 16922806
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of ATP sensitive potassium channel modifiers on antinociceptive effect of metoclopramide.
    Reddy PM; Shantanu S; Shewade DG; Ramaswamy S
    Indian J Exp Biol; 2001 May; 39(5):476-8. PubMed ID: 11510133
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Possible presence of the ATP-sensitive K+ channel in isolated spinal dorsal horn neurons of the rat.
    Yamashita S; Park JB; Ryu PD; Inukai H; Tanifuji M; Murase K
    Neurosci Lett; 1994 Apr; 170(2):208-12. PubMed ID: 8058189
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.