These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. Learning activation rules rather than connection weights. Grundstrom EL; Reggia JA Int J Neural Syst; 1996 May; 7(2):129-47. PubMed ID: 8823624 [TBL] [Abstract][Full Text] [Related]
4. Learning and representing temporal knowledge in recurrent networks. Borges RV; Garcez Ad; Lamb LC IEEE Trans Neural Netw; 2011 Dec; 22(12):2409-21. PubMed ID: 22010150 [TBL] [Abstract][Full Text] [Related]
5. Automated prediction of apnea and hypopnea, using a LAMSTAR artificial neural network. Waxman JA; Graupe D; Carley DW Am J Respir Crit Care Med; 2010 Apr; 181(7):727-33. PubMed ID: 20019342 [TBL] [Abstract][Full Text] [Related]
6. A connectionist computational model for epistemic and temporal reasoning. d'Avila Garcez AS; Lamb LC Neural Comput; 2006 Jul; 18(7):1711-38. PubMed ID: 16764519 [TBL] [Abstract][Full Text] [Related]
7. A novel method for the detection of apnea and hypopnea events in respiration signals. Várady P; Micsik T; Benedek S; Benyó Z IEEE Trans Biomed Eng; 2002 Sep; 49(9):936-42. PubMed ID: 12214883 [TBL] [Abstract][Full Text] [Related]
8. Early lexical development in a self-organizing neural network. Li P; Farkas I; MacWhinney B Neural Netw; 2004; 17(8-9):1345-62. PubMed ID: 15555870 [TBL] [Abstract][Full Text] [Related]
9. eAMI: a qualitative quantification of periodic breathing based on amplitude of oscillations. Tellez HF; Pattyn N; Mairesse O; Dolenc-Groselj L; Eiken O; Mekjavic IB; Migeotte PF; Macdonald-Nethercott E; Meeusen R; Neyt X Sleep; 2015 Mar; 38(3):381-9. PubMed ID: 25581914 [TBL] [Abstract][Full Text] [Related]
11. Automated sleep stage detection with a classical and a neural learning algorithm--methodological aspects. Schwaibold M; Schöchlin J; Bolz A Biomed Tech (Berl); 2002; 47 Suppl 1 Pt 1():318-20. PubMed ID: 12451852 [TBL] [Abstract][Full Text] [Related]
12. Real-time sleep apnea detection by classifier combination. Xie B; Minn H IEEE Trans Inf Technol Biomed; 2012 May; 16(3):469-77. PubMed ID: 22353404 [TBL] [Abstract][Full Text] [Related]
13. Greedy rule generation from discrete data and its use in neural network rule extraction. Odajima K; Hayashi Y; Tianxia G; Setiono R Neural Netw; 2008 Sep; 21(7):1020-8. PubMed ID: 18442894 [TBL] [Abstract][Full Text] [Related]
14. Rule extraction by successive regularization. Ishikawa M Neural Netw; 2000 Dec; 13(10):1171-83. PubMed ID: 11156193 [TBL] [Abstract][Full Text] [Related]
16. Designing boosting ensemble of relational fuzzy systems. Scherer R Int J Neural Syst; 2010 Oct; 20(5):381-8. PubMed ID: 20945517 [TBL] [Abstract][Full Text] [Related]
17. Hyper-heuristic Evolution of Dispatching Rules: A Comparison of Rule Representations. Branke J; Hildebrandt T; Scholz-Reiter B Evol Comput; 2015; 23(2):249-77. PubMed ID: 24885679 [TBL] [Abstract][Full Text] [Related]
18. Real-time apnea-hypopnea event detection during sleep by convolutional neural networks. Choi SH; Yoon H; Kim HS; Kim HB; Kwon HB; Oh SM; Lee YJ; Park KS Comput Biol Med; 2018 Sep; 100():123-131. PubMed ID: 29990645 [TBL] [Abstract][Full Text] [Related]
19. Knowledge acquisition and representation using fuzzy evidential reasoning and dynamic adaptive fuzzy Petri nets. Liu HC; Liu L; Lin QL; Liu N IEEE Trans Cybern; 2013 Jun; 43(3):1059-72. PubMed ID: 23757441 [TBL] [Abstract][Full Text] [Related]
20. Knowledge acquisition for temporal abstraction. Stein A; Musen MA; Shahar Y Proc AMIA Annu Fall Symp; 1996; ():204-8. PubMed ID: 8947657 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]