These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
493 related articles for article (PubMed ID: 11705370)
61. Structural models for the metal centers in the nitrogenase molybdenum-iron protein. Kim J; Rees DC Science; 1992 Sep; 257(5077):1677-82. PubMed ID: 1529354 [TBL] [Abstract][Full Text] [Related]
62. The Azotobacter vinelandii NifEN complex contains two identical [4Fe-4S] clusters. Goodwin PJ; Agar JN; Roll JT; Roberts GP; Johnson MK; Dean DR Biochemistry; 1998 Jul; 37(29):10420-8. PubMed ID: 9671511 [TBL] [Abstract][Full Text] [Related]
63. Iron-molybdenum cofactor biosynthesis in Azotobacter vinelandii requires the iron protein of nitrogenase. Robinson AC; Dean DR; Burgess BK J Biol Chem; 1987 Oct; 262(29):14327-32. PubMed ID: 3477546 [TBL] [Abstract][Full Text] [Related]
64. Variable-temperature, variable-field magnetic circular dichroism spectroscopic study of the metal clusters in the DeltanifB and DeltanifH mofe proteins of nitrogenase from Azotobacter vinelandii. Broach RB; Rupnik K; Hu Y; Fay AW; Cotton M; Ribbe MW; Hales BJ Biochemistry; 2006 Dec; 45(50):15039-48. PubMed ID: 17154541 [TBL] [Abstract][Full Text] [Related]
65. FeMo cofactor synthesis by a nifH mutant with altered MgATP reactivity. Gavini N; Burgess BK J Biol Chem; 1992 Oct; 267(29):21179-86. PubMed ID: 1400428 [TBL] [Abstract][Full Text] [Related]
66. Role for the nitrogenase MoFe protein alpha-subunit in FeMo-cofactor binding and catalysis. Scott DJ; May HD; Newton WE; Brigle KE; Dean DR Nature; 1990 Jan; 343(6254):188-90. PubMed ID: 2153269 [TBL] [Abstract][Full Text] [Related]
67. Large scale isolation and characterization of the molybdenum-iron cluster from nitrogenase. Ma L; Gavini N; Liu HI; Hedman B; Hodgson KO; Burgess BK J Biol Chem; 1994 Jul; 269(27):18007-15. PubMed ID: 8027059 [TBL] [Abstract][Full Text] [Related]
68. The interstitial atom of the nitrogenase FeMo-cofactor: ENDOR and ESEEM evidence that it is not a nitrogen. Yang TC; Maeser NK; Laryukhin M; Lee HI; Dean DR; Seefeldt LC; Hoffman BM J Am Chem Soc; 2005 Sep; 127(37):12804-5. PubMed ID: 16159266 [TBL] [Abstract][Full Text] [Related]
69. Cyanide and methylisocyanide binding to the isolated iron-molybdenum cofactor of nitrogenase. Conradson SD; Burgess BK; Vaughn SA; Roe AL; Hedman B; Hodgson KO; Holm RH J Biol Chem; 1989 Sep; 264(27):15967-74. PubMed ID: 2777773 [TBL] [Abstract][Full Text] [Related]
70. Mapping the site(s) of MgATP and MgADP interaction with the nitrogenase of Azotobacter vinelandii. Lysine 15 of the iron protein plays a major role in MgATP interaction. Seefeldt LC; Morgan TV; Dean DR; Mortenson LE J Biol Chem; 1992 Apr; 267(10):6680-8. PubMed ID: 1313018 [TBL] [Abstract][Full Text] [Related]
71. Redox properties and EPR spectroscopy of the P clusters of Azotobacter vinelandii MoFe protein. Pierik AJ; Wassink H; Haaker H; Hagen WR Eur J Biochem; 1993 Feb; 212(1):51-61. PubMed ID: 8383042 [TBL] [Abstract][Full Text] [Related]
72. Diazene (HN=NH) is a substrate for nitrogenase: insights into the pathway of N2 reduction. Barney BM; McClead J; Lukoyanov D; Laryukhin M; Yang TC; Dean DR; Hoffman BM; Seefeldt LC Biochemistry; 2007 Jun; 46(23):6784-94. PubMed ID: 17508723 [TBL] [Abstract][Full Text] [Related]
73. A conformational equilibrium in the nitrogenase MoFe protein with an α-V70I amino acid substitution illuminates the mechanism of H Lukoyanov DA; Yang ZY; Shisler K; Peters JW; Raugei S; Dean DR; Seefeldt LC; Hoffman BM Faraday Discuss; 2023 Jul; 243(0):231-252. PubMed ID: 37021412 [TBL] [Abstract][Full Text] [Related]
74. Structural characterization of the nitrogenase molybdenum-iron protein with the substrate acetylene trapped near the active site. Keable SM; Vertemara J; Zadvornyy OA; Eilers BJ; Danyal K; Rasmussen AJ; De Gioia L; Zampella G; Seefeldt LC; Peters JW J Inorg Biochem; 2018 Mar; 180():129-134. PubMed ID: 29275221 [TBL] [Abstract][Full Text] [Related]
75. Evidence that MgATP accelerates primary electron transfer in a Clostridium pasteurianum Fe protein-Azotobacter vinelandii MoFe protein nitrogenase tight complex. Chan JM; Ryle MJ; Seefeldt LC J Biol Chem; 1999 Jun; 274(25):17593-8. PubMed ID: 10364195 [TBL] [Abstract][Full Text] [Related]
76. Comparative in-vivo and in-vitro 99Mo-time-differential-perturbed-angular-correlation studies on the nitrogenase MoFe protein and on other Mo species of different N2-fixing bacteria. Muller A; Suer W; Pohlmann C; Schneider K; Thies WG; Appel H Eur J Biochem; 1997 Jun; 246(2):311-9. PubMed ID: 9208919 [TBL] [Abstract][Full Text] [Related]
77. Elucidation of a MgATP signal transduction pathway in the nitrogenase iron protein: formation of a conformation resembling the MgATP-bound state by protein engineering. Ryle MJ; Seefeldt LC Biochemistry; 1996 Apr; 35(15):4766-75. PubMed ID: 8664266 [TBL] [Abstract][Full Text] [Related]
78. An all-ferrous state of the Fe protein of nitrogenase. Interaction with nucleotides and electron transfer to the MoFe protein. Angove HC; Yoo SJ; Münck E; Burgess BK J Biol Chem; 1998 Oct; 273(41):26330-7. PubMed ID: 9756863 [TBL] [Abstract][Full Text] [Related]
79. Diastereomer-dependent substrate reduction properties of a dinitrogenase containing 1-fluorohomocitrate in the iron-molybdenum cofactor. Madden MS; Kindon ND; Ludden PW; Shah VK Proc Natl Acad Sci U S A; 1990 Sep; 87(17):6517-21. PubMed ID: 2204057 [TBL] [Abstract][Full Text] [Related]
80. Trapping H- bound to the nitrogenase FeMo-cofactor active site during H2 evolution: characterization by ENDOR spectroscopy. Igarashi RY; Laryukhin M; Dos Santos PC; Lee HI; Dean DR; Seefeldt LC; Hoffman BM J Am Chem Soc; 2005 May; 127(17):6231-41. PubMed ID: 15853328 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]