These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
493 related articles for article (PubMed ID: 11705370)
81. Electron transfer in nitrogenase analyzed by Marcus theory: evidence for gating by MgATP. Lanzilotta WN; Parker VD; Seefeldt LC Biochemistry; 1998 Jan; 37(1):399-407. PubMed ID: 9425061 [TBL] [Abstract][Full Text] [Related]
82. MgATP-Bound and nucleotide-free structures of a nitrogenase protein complex between the Leu 127 Delta-Fe-protein and the MoFe-protein. Chiu H; Peters JW; Lanzilotta WN; Ryle MJ; Seefeldt LC; Howard JB; Rees DC Biochemistry; 2001 Jan; 40(3):641-50. PubMed ID: 11170380 [TBL] [Abstract][Full Text] [Related]
83. The FeMoco-deficient MoFe protein produced by a nifH deletion strain of Azotobacter vinelandii shows unusual P-cluster features. Ribbe MW; Hu Y; Guo M; Schmid B; Burgess BK J Biol Chem; 2002 Jun; 277(26):23469-76. PubMed ID: 11978793 [TBL] [Abstract][Full Text] [Related]
84. FeMo cofactor of nitrogenase: a density functional study of states M(N), M(OX), M(R), and M(I). Lovell T; Li J; Liu T; Case DA; Noodleman L J Am Chem Soc; 2001 Dec; 123(49):12392-410. PubMed ID: 11734043 [TBL] [Abstract][Full Text] [Related]
85. Evidence that conserved residues Cys-62 and Cys-154 within the Azotobacter vinelandii nitrogenase MoFe protein alpha-subunit are essential for nitrogenase activity but conserved residues His-83 and Cys-88 are not. Dean DR; Setterquist RA; Brigle KE; Scott DJ; Laird NF; Newton WE Mol Microbiol; 1990 Sep; 4(9):1505-12. PubMed ID: 2287275 [TBL] [Abstract][Full Text] [Related]
86. Structural consequences of turnover-induced homocitrate loss in nitrogenase. Warmack RA; Maggiolo AO; Orta A; Wenke BB; Howard JB; Rees DC Nat Commun; 2023 Feb; 14(1):1091. PubMed ID: 36841829 [TBL] [Abstract][Full Text] [Related]
87. Nitrogenase reduction of carbon disulfide: freeze-quench EPR and ENDOR evidence for three sequential intermediates with cluster-bound carbon moieties. Ryle MJ; Lee HI; Seefeldt LC; Hoffman BM Biochemistry; 2000 Feb; 39(5):1114-9. PubMed ID: 10653657 [TBL] [Abstract][Full Text] [Related]
88. Another role for CO with nitrogenase? CO stimulates hydrogen evolution catalyzed by variant Azotobacter vinelandii Mo-nitrogenases. Fisher K; Hare ND; Newton WE Biochemistry; 2014 Oct; 53(39):6151-60. PubMed ID: 25203280 [TBL] [Abstract][Full Text] [Related]
89. Quantitative EPR of an S = 7/2 system in thionine-oxidized MoFe proteins of nitrogenase. A redefinition of the P-cluster concept. Hagen WR; Wassink H; Eady RR; Smith BE; Haaker H Eur J Biochem; 1987 Dec; 169(3):457-65. PubMed ID: 2826146 [TBL] [Abstract][Full Text] [Related]
90. Nucleotide hydrolysis and protein conformational changes in Azotobacter vinelandii nitrogenase iron protein: defining the function of aspartate 129. Lanzilotta WN; Ryle MJ; Seefeldt LC Biochemistry; 1995 Aug; 34(34):10713-23. PubMed ID: 7662655 [TBL] [Abstract][Full Text] [Related]
91. The [4Fe-4S] cluster domain of the nitrogenase iron protein facilitates conformational changes required for the cooperative binding of two nucleotides. Ryle MJ; Seefeldt LC Biochemistry; 1996 Dec; 35(49):15654-62. PubMed ID: 8961928 [TBL] [Abstract][Full Text] [Related]
92. Mechanistic significance of the preparatory migration of hydrogen atoms around the FeMo-co active site of nitrogenase. Dance I Biochemistry; 2006 May; 45(20):6328-40. PubMed ID: 16700544 [TBL] [Abstract][Full Text] [Related]
93. Formation of a homocitrate-free iron-molybdenum cluster on NifEN: implications for the role of homocitrate in nitrogenase assembly. Fay AW; Blank MA; Yoshizawa JM; Lee CC; Wiig JA; Hu Y; Hodgson KO; Hedman B; Ribbe MW Dalton Trans; 2010 Mar; 39(12):3124-30. PubMed ID: 20221547 [TBL] [Abstract][Full Text] [Related]
94. Testing if the interstitial atom, X, of the nitrogenase molybdenum-iron cofactor is N or C: ENDOR, ESEEM, and DFT studies of the S = 3/2 resting state in multiple environments. Lukoyanov D; Pelmenschikov V; Maeser N; Laryukhin M; Yang TC; Noodleman L; Dean DR; Case DA; Seefeldt LC; Hoffman BM Inorg Chem; 2007 Dec; 46(26):11437-49. PubMed ID: 18027933 [TBL] [Abstract][Full Text] [Related]
95. Analysis of the magnetic properties of nitrogenase FeMo cofactor by single-crystal EPR spectroscopy. Spatzal T; Einsle O; Andrade SL Angew Chem Int Ed Engl; 2013 Sep; 52(38):10116-9. PubMed ID: 23929797 [TBL] [Abstract][Full Text] [Related]
96. Connecting nitrogenase intermediates with the kinetic scheme for N2 reduction by a relaxation protocol and identification of the N2 binding state. Lukoyanov D; Barney BM; Dean DR; Seefeldt LC; Hoffman BM Proc Natl Acad Sci U S A; 2007 Jan; 104(5):1451-5. PubMed ID: 17251348 [TBL] [Abstract][Full Text] [Related]
97. CO2 Reduction Catalyzed by Nitrogenase: Pathways to Formate, Carbon Monoxide, and Methane. Khadka N; Dean DR; Smith D; Hoffman BM; Raugei S; Seefeldt LC Inorg Chem; 2016 Sep; 55(17):8321-30. PubMed ID: 27500789 [TBL] [Abstract][Full Text] [Related]
98. Insertion of heterometals into the NifEN-associated iron-molybdenum cofactor precursor. Yoshizawa JM; Fay AW; Lee CC; Hu Y; Ribbe MW J Biol Inorg Chem; 2010 Mar; 15(3):421-8. PubMed ID: 19967421 [TBL] [Abstract][Full Text] [Related]
99. Iron-sulfur clusters in the molybdenum-iron protein component of nitrogenase. Electron paramagnetic resonance of the carbon monoxide inhibited state. Davis LC; Henzl MT; Burris RH; Orme-Johnson WH Biochemistry; 1979 Oct; 18(22):4860-9. PubMed ID: 228701 [TBL] [Abstract][Full Text] [Related]