These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 11705392)

  • 1. Energetics of side chain packing in staphylococcal nuclease assessed by systematic double mutant cycles.
    Chen J; Stites WE
    Biochemistry; 2001 Nov; 40(46):14004-11. PubMed ID: 11705392
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Energetics of side chain packing in staphylococcal nuclease assessed by exchange of valines, isoleucines, and leucines.
    Holder JB; Bennett AF; Chen J; Spencer DS; Byrne MP; Stites WE
    Biochemistry; 2001 Nov; 40(46):13998-4003. PubMed ID: 11705391
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Higher-order packing interactions in triple and quadruple mutants of staphylococcal nuclease.
    Chen J; Stites WE
    Biochemistry; 2001 Nov; 40(46):14012-9. PubMed ID: 11705393
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Packing is a key selection factor in the evolution of protein hydrophobic cores.
    Chen J; Stites WE
    Biochemistry; 2001 Dec; 40(50):15280-9. PubMed ID: 11735410
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Increasing the thermostability of staphylococcal nuclease: implications for the origin of protein thermostability.
    Chen J; Lu Z; Sakon J; Stites WE
    J Mol Biol; 2000 Oct; 303(2):125-30. PubMed ID: 11023780
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Proteins with simplified hydrophobic cores compared to other packing mutants.
    Chen J; Lu Z; Sakon J; Stites WE
    Biophys Chem; 2004 Aug; 110(3):239-48. PubMed ID: 15228960
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Contributions of the large hydrophobic amino acids to the stability of staphylococcal nuclease.
    Shortle D; Stites WE; Meeker AK
    Biochemistry; 1990 Sep; 29(35):8033-41. PubMed ID: 2261461
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Changes in stability upon charge reversal and neutralization substitution in staphylococcal nuclease are dominated by favorable electrostatic effects.
    Schwehm JM; Fitch CA; Dang BN; García-Moreno E B; Stites WE
    Biochemistry; 2003 Feb; 42(4):1118-28. PubMed ID: 12549934
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Stability effects of increasing the hydrophobicity of solvent-exposed side chains in staphylococcal nuclease.
    Schwehm JM; Kristyanne ES; Biggers CC; Stites WE
    Biochemistry; 1998 May; 37(19):6939-48. PubMed ID: 9578580
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Contributions of the polar, uncharged amino acids to the stability of staphylococcal nuclease: evidence for mutational effects on the free energy of the denatured state.
    Green SM; Meeker AK; Shortle D
    Biochemistry; 1992 Jun; 31(25):5717-28. PubMed ID: 1610820
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Patterns of nonadditivity between pairs of stability mutations in staphylococcal nuclease.
    Green SM; Shortle D
    Biochemistry; 1993 Sep; 32(38):10131-9. PubMed ID: 8399139
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Molecular dynamics study of the stability of staphylococcal nuclease mutants: component analysis of the free energy difference of denaturation.
    Yamaotsu N; Moriguchi I; Kollman PA; Hirono S
    Biochim Biophys Acta; 1993 Apr; 1163(1):81-8. PubMed ID: 8476933
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Stability studies of amino acid substitutions at tyrosine 27 of the staphylococcal nuclease beta-barrel.
    Bhat MG; Ganley LM; Ledman DW; Goodman MA; Fox RO
    Biochemistry; 1997 Oct; 36(40):12167-74. PubMed ID: 9315853
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Replacement of staphylococcal nuclease hydrophobic core residues with those from thermophilic homologues indicates packing is improved in some thermostable proteins.
    Chen J; Stites WE
    J Mol Biol; 2004 Nov; 344(1):271-80. PubMed ID: 15504416
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Energetic contribution of side chain hydrogen bonding to the stability of staphylococcal nuclease.
    Byrne MP; Manuel RL; Lowe LG; Stites WE
    Biochemistry; 1995 Oct; 34(42):13949-60. PubMed ID: 7577991
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The pH dependence of staphylococcal nuclease stability is incompatible with a three-state denaturation model.
    Spencer D; Bertrand GM; Stites WE
    Biophys Chem; 2013; 180-181():86-94. PubMed ID: 23892194
    [TBL] [Abstract][Full Text] [Related]  

  • 17. High-pressure denaturation of staphylococcal nuclease proline-to-glycine substitution mutants.
    Vidugiris GJ; Truckses DM; Markley JL; Royer CA
    Biochemistry; 1996 Mar; 35(12):3857-64. PubMed ID: 8620010
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Estimation of stabilities of staphylococcal nuclease mutants (Met32-->Ala and Met32-->Leu) using molecular dynamics/free energy perturbation.
    Yamaotsu N; Moriguchi I; Hirono S
    Biochim Biophys Acta; 1993 Dec; 1203(2):243-50. PubMed ID: 8268207
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of mutations involving charged residues on the stability of staphylococcal nuclease: a continuum electrostatics study.
    Börjesson U; Hünenberger PH
    Protein Eng; 2003 Nov; 16(11):831-40. PubMed ID: 14631072
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Contributions of the ionizable amino acids to the stability of staphylococcal nuclease.
    Meeker AK; Garcia-Moreno B; Shortle D
    Biochemistry; 1996 May; 35(20):6443-9. PubMed ID: 8639591
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.