These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
290 related articles for article (PubMed ID: 11705954)
1. Role of complement in Mycobacterium avium pathogenesis: in vivo and in vitro analyses of the host response to infection in the absence of complement component C3. Bohlson SS; Strasser JA; Bower JJ; Schorey JS Infect Immun; 2001 Dec; 69(12):7729-35. PubMed ID: 11705954 [TBL] [Abstract][Full Text] [Related]
2. [Frontier of mycobacterium research--host vs. mycobacterium]. Okada M; Shirakawa T Kekkaku; 2005 Sep; 80(9):613-29. PubMed ID: 16245793 [TBL] [Abstract][Full Text] [Related]
4. Environmental strains of Mycobacterium avium interfere with immune responses associated with Mycobacterium bovis BCG vaccination. Young SL; Slobbe L; Wilson R; Buddle BM; de Lisle GW; Buchan GS Infect Immun; 2007 Jun; 75(6):2833-40. PubMed ID: 17371857 [TBL] [Abstract][Full Text] [Related]
5. Cathepsin L maturation and activity is impaired in macrophages harboring M. avium and M. tuberculosis. Nepal RM; Mampe S; Shaffer B; Erickson AH; Bryant P Int Immunol; 2006 Jun; 18(6):931-9. PubMed ID: 16636015 [TBL] [Abstract][Full Text] [Related]
6. Mycobacterium avium infection of macrophages results in progressive suppression of interleukin-12 production in vitro and in vivo. Wagner D; Sangari FJ; Kim S; Petrofsky M; Bermudez LE J Leukoc Biol; 2002 Jan; 71(1):80-8. PubMed ID: 11781383 [TBL] [Abstract][Full Text] [Related]
7. Infection of mice with Mycobacterium avium primes CD8+ lymphocytes for apoptosis upon exposure to macrophages. Roger PM; Bermudez LE Clin Immunol; 2001 Jun; 99(3):378-86. PubMed ID: 11358435 [TBL] [Abstract][Full Text] [Related]
8. Improved clearance of Mycobacterium avium upon disruption of the inducible nitric oxide synthase gene. Gomes MS; Flórido M; Pais TF; Appelberg R J Immunol; 1999 Jun; 162(11):6734-9. PubMed ID: 10352292 [TBL] [Abstract][Full Text] [Related]
9. Mycobacterium avium 104 deleted of the methyltransferase D gene by allelic replacement lacks serotype-specific glycopeptidolipids and shows attenuated virulence in mice. Krzywinska E; Bhatnagar S; Sweet L; Chatterjee D; Schorey JS Mol Microbiol; 2005 Jun; 56(5):1262-73. PubMed ID: 15882419 [TBL] [Abstract][Full Text] [Related]
10. Neutrophils from Mycobacterium avium-infected mice produce TNF-alpha, IL-12, and IL-1 beta and have a putative role in early host response. Petrofsky M; Bermudez LE Clin Immunol; 1999 Jun; 91(3):354-8. PubMed ID: 10370382 [TBL] [Abstract][Full Text] [Related]
11. Induction of murine macrophage TNF-alpha synthesis by Mycobacterium avium is modulated through complement-dependent interaction via complement receptors 3 and 4 in relation to M. avium glycopeptidolipid. Irani VR; Maslow JN FEMS Microbiol Lett; 2005 May; 246(2):221-8. PubMed ID: 15899409 [TBL] [Abstract][Full Text] [Related]
12. Elevated mitogen-activated protein kinase signalling and increased macrophage activation in cells infected with a glycopeptidolipid-deficient Mycobacterium avium. Bhatnagar S; Schorey JS Cell Microbiol; 2006 Jan; 8(1):85-96. PubMed ID: 16367868 [TBL] [Abstract][Full Text] [Related]
13. Polymeric IgR knockout mice are more susceptible to mycobacterial infections in the respiratory tract than wild-type mice. Tjärnlund A; Rodríguez A; Cardona PJ; Guirado E; Ivanyi J; Singh M; Troye-Blomberg M; Fernández C Int Immunol; 2006 May; 18(5):807-16. PubMed ID: 16569672 [TBL] [Abstract][Full Text] [Related]
14. Oral infection of ferrets with virulent Mycobacterium bovis or Mycobacterium avium: susceptibility, pathogenesis and immune response. Cross ML; Labes RE; Mackintosh CG J Comp Pathol; 2000 Jul; 123(1):15-21. PubMed ID: 10906251 [TBL] [Abstract][Full Text] [Related]
15. Engagement of Toll-like receptor 2 in mouse macrophages infected with Mycobacterium avium induces non-oxidative and TNF-independent anti-mycobacterial activity. Gomes MS; Sousa Fernandes S; Cordeiro JV; Silva Gomes S; Vieira A; Appelberg R Eur J Immunol; 2008 Aug; 38(8):2180-9. PubMed ID: 18624355 [TBL] [Abstract][Full Text] [Related]
16. Glycopeptidolipids from Mycobacterium avium promote macrophage activation in a TLR2- and MyD88-dependent manner. Sweet L; Schorey JS J Leukoc Biol; 2006 Aug; 80(2):415-23. PubMed ID: 16760377 [TBL] [Abstract][Full Text] [Related]
17. Role of iron in the pathogenesis of Mycobacterium avium infection in mice. Dhople AM; Ibanez MA; Poirier TC Microbios; 1996; 87(351):77-87. PubMed ID: 9032957 [TBL] [Abstract][Full Text] [Related]
18. Distinctive western blot antibody patterns induced by infection of mice with individual strains of the Mycobacterium avium complex. Elsaghier A; Nolan A; Allen B; Ivanyi J Immunology; 1992 Jul; 76(3):355-61. PubMed ID: 1526646 [TBL] [Abstract][Full Text] [Related]
19. Utilization of CD11b knockout mice to characterize the role of complement receptor 3 (CR3, CD11b/CD18) in the growth of Mycobacterium tuberculosis in macrophages. Melo MD; Catchpole IR; Haggar G; Stokes RW Cell Immunol; 2000 Oct; 205(1):13-23. PubMed ID: 11078603 [TBL] [Abstract][Full Text] [Related]
20. Predominant role of IgM-dependent activation of the classical pathway in the clearance of dying cells by murine bone marrow-derived macrophages in vitro. Quartier P; Potter PK; Ehrenstein MR; Walport MJ; Botto M Eur J Immunol; 2005 Jan; 35(1):252-60. PubMed ID: 15597324 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]