BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

265 related articles for article (PubMed ID: 11706361)

  • 41. Denitration of 2,4,6-trinitrotoluene by Pseudomonas savastanoi.
    Martin JL; Comfort SD; Shea PJ; Kokjohn TA; Drijber RA
    Can J Microbiol; 1997 May; 43(5):447-55. PubMed ID: 9198535
    [TBL] [Abstract][Full Text] [Related]  

  • 42. [Synthesis of electroconductive polyaniline using immobilized laccase].
    Vasil'eva IS; Morozova OV; Shumakovich GP; Iaropolov AI
    Prikl Biokhim Mikrobiol; 2009; 45(1):33-7. PubMed ID: 19235506
    [TBL] [Abstract][Full Text] [Related]  

  • 43. The transformation of triclosan by laccase: Effect of humic acid on the reaction kinetics, products and pathway.
    Dou RN; Wang JH; Chen YC; Hu YY
    Environ Pollut; 2018 Mar; 234():88-95. PubMed ID: 29172042
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Implication of manganese (III), oxalate, and oxygen in the degradation of nitroaromatic compounds by manganese peroxidase (MnP).
    Van Aken B; Agathos SN
    Appl Microbiol Biotechnol; 2002 Mar; 58(3):345-51. PubMed ID: 11935186
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Degradation of 2,4,6-trinitrotoluene by selected helophytes.
    Nepovim A; Hebner A; Soudek P; Gerth A; Thomas H; Smrcek S; Vanek T
    Chemosphere; 2005 Sep; 60(10):1454-61. PubMed ID: 16054915
    [TBL] [Abstract][Full Text] [Related]  

  • 46. A novel mechanism of bisphenol A removal during electro-enzymatic oxidative process: chain reactions from self-polymerization to cross-coupling oxidation.
    Li H; Zhao H; Liu C; Li Y; Cao H; Zhang Y
    Chemosphere; 2013 Aug; 92(10):1294-300. PubMed ID: 23732003
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Enhanced bioavailability of sorbed 2,4,6-trinitrotoluene (TNT) by a bacterial consortium.
    Robertson BK; Jjemba PK
    Chemosphere; 2005 Jan; 58(3):263-70. PubMed ID: 15581929
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Conversion of aminonitrotoluenes by fungal manganese peroxidase.
    Scheibner K; Hofrichter M
    J Basic Microbiol; 1998; 38(1):51-9. PubMed ID: 9575043
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Rate of bentazone transformation in four layers of a humic sandy soil profile with fluctuating water table.
    Leistra M; Smelt JH; Matser AM; Bogte JJ; van der Pas LJ
    Pest Manag Sci; 2001 Nov; 57(11):1023-32. PubMed ID: 11721519
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Electrochemical destruction of dinitrotoluene isomers and 2,4,6-trinitrotoluene in spent acid from toluene nitration process.
    Chen WS; Liang JS
    J Hazard Mater; 2009 Jan; 161(2-3):1017-23. PubMed ID: 18511190
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Degradation kinetics of TNT in the presence of six mineral surfaces and ferrous iron.
    Nefso EK; Burns SE; McGrath CJ
    J Hazard Mater; 2005 Aug; 123(1-3):79-88. PubMed ID: 15961226
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Rapid spectrophotometric determination of 2,4,6-trinitrotoluene in a Pseudomonas enzyme assay.
    Oh B; Sarath G; Shea PJ; Drijber RA; Comfort SD
    J Microbiol Methods; 2000 Oct; 42(2):149-58. PubMed ID: 11018271
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Retention and extractability of phenol, cresol, and dichlorophenol exposed to two surface soils in the presence of horseradish peroxidase enzyme.
    Xu F; Bhandari A
    J Agric Food Chem; 2003 Jan; 51(1):183-8. PubMed ID: 12502405
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Transformation of the fungicide cyprodinil by a laccase of Trametes villosa in the presence of phenolic mediators and humic acid.
    Kang KH; Dec J; Park H; Bollag JM
    Water Res; 2002 Nov; 36(19):4907-15. PubMed ID: 12448535
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Determination of laccase gene expression during degradation of 2,4,6-trinitrotoluene and its catabolic intermediates in Trametes versicolor.
    Cheong S; Yeo S; Song HG; Choi HT
    Microbiol Res; 2006; 161(4):316-20. PubMed ID: 16427260
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Humic-like substances of bacterial origin. III. Production of humic-like substances by Pseudomonas acidovorans in media containing certain benzene derivatives.
    Kosinkiewicz B
    Acta Microbiol Pol; 1977; 26(4):393-401. PubMed ID: 75668
    [No Abstract]   [Full Text] [Related]  

  • 57. Formation of chloroacetic acids from soil, humic acid and phenolic moieties.
    Fahimi IJ; Keppler F; Schöler HF
    Chemosphere; 2003 Jul; 52(2):513-20. PubMed ID: 12738276
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Fenton-like oxidation of 2,4,6-trinitrotoluene using different iron minerals.
    Matta R; Hanna K; Chiron S
    Sci Total Environ; 2007 Oct; 385(1-3):242-51. PubMed ID: 17662375
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Transformation of low molecular compounds and soil humic acid by two domain laccase of Streptomyces puniceus in the presence of ferulic and caffeic acids.
    Trubitsina LI; Lisov AV; Belova OV; Trubitsin IV; Demin VV; Konstantinov AI; Zavarzina AG; Leontievsky AA
    PLoS One; 2020; 15(9):e0239005. PubMed ID: 32946485
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Reductive transformation of TNT by Escherichia coli resting cells: kinetic analysis.
    Yin H; Wood TK; Smets BF
    Appl Microbiol Biotechnol; 2005 Dec; 69(3):326-34. PubMed ID: 15838672
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.