These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

110 related articles for article (PubMed ID: 11707103)

  • 21. A functional MRI study of motor dysfunction in Friedreich's ataxia.
    Akhlaghi H; Corben L; Georgiou-Karistianis N; Bradshaw J; Delatycki MB; Storey E; Egan GF
    Brain Res; 2012 Aug; 1471():138-54. PubMed ID: 22771856
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Changes in regional cerebral blood flow during self-paced arm and finger movements. A PET study.
    Kawashima R; Itoh H; Ono S; Satoh K; Furumoto S; Gotoh R; Koyama M; Yoshioka S; Takahashi T; Takahashi K; Yanagisawa T; Fukuda H
    Brain Res; 1996 Apr; 716(1-2):141-8. PubMed ID: 8738230
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Motor sequence learning with the nondominant left hand. A PET functional imaging study.
    Grafton ST; Hazeltine E; Ivry RB
    Exp Brain Res; 2002 Oct; 146(3):369-78. PubMed ID: 12232693
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The attentional role of the left parietal cortex: the distinct lateralization and localization of motor attention in the human brain.
    Rushworth MF; Krams M; Passingham RE
    J Cogn Neurosci; 2001 Jul; 13(5):698-710. PubMed ID: 11506665
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Parietal mapping of visuomotor transformations during human tool grasping.
    Stark A; Zohary E
    Cereb Cortex; 2008 Oct; 18(10):2358-68. PubMed ID: 18252741
    [TBL] [Abstract][Full Text] [Related]  

  • 26. [A neuropsychological and functional brain imaging study of visuo-imitative apraxia].
    Peigneux P; Van Der Linden M; Andres-Benito P; Sadzot B; Franck G; Salmon E
    Rev Neurol (Paris); 2000 May; 156(5):459-72. PubMed ID: 10844366
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The relevance of sensory input for the cerebellar control of movements.
    Jueptner M; Ottinger S; Fellows SJ; Adamschewski J; Flerich L; Müller SP; Diener HC; Thilmann AF; Weiller C
    Neuroimage; 1997 Jan; 5(1):41-8. PubMed ID: 9038283
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Functional brain areas associated with manipulation of a prehensile tool: a PET study.
    Tsuda H; Aoki T; Oku N; Kimura Y; Hatazawa J; Kinoshita H
    Hum Brain Mapp; 2009 Sep; 30(9):2879-89. PubMed ID: 19172647
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Brain lateralization of motor imagery: motor planning asymmetry as a cause of movement lateralization.
    Sabaté M; González B; Rodríguez M
    Neuropsychologia; 2004; 42(8):1041-9. PubMed ID: 15093143
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Representations of graphomotor trajectories in the human parietal cortex: evidence for controlled processing and automatic performance.
    Seitz RJ; Canavan AG; Yágüez L; Herzog H; Tellmann L; Knorr U; Huang Y; Hömberg V
    Eur J Neurosci; 1997 Feb; 9(2):378-89. PubMed ID: 9058057
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Somatosensory activations of the parietal operculum of man. A PET study.
    Ledberg A; O'Sullivan BT; Kinomura S; Roland PE
    Eur J Neurosci; 1995 Sep; 7(9):1934-41. PubMed ID: 8528469
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Multiple components of lateral posterior parietal activation associated with cognitive set shifting.
    Asari T; Konishi S; Jimura K; Miyashita Y
    Neuroimage; 2005 Jul; 26(3):694-702. PubMed ID: 15955479
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Dominance of the right hemisphere and role of area 2 in human kinesthesia.
    Naito E; Roland PE; Grefkes C; Choi HJ; Eickhoff S; Geyer S; Zilles K; Ehrsson HH
    J Neurophysiol; 2005 Feb; 93(2):1020-34. PubMed ID: 15385595
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Impairment of grasping movements following a bilateral posterior parietal lesion.
    Jeannerod M; Decety J; Michel F
    Neuropsychologia; 1994 Apr; 32(4):369-80. PubMed ID: 8047246
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The control of hand movements in a case of hemianaesthesia following a parietal lesion.
    Jeannerod M; Michel F; Prablanc C
    Brain; 1984 Sep; 107 ( Pt 3)():899-920. PubMed ID: 6478182
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The functional neuroanatomy of simple calculation and number repetition: A parametric PET activation study.
    Cowell SF; Egan GF; Code C; Harasty J; Watson JD
    Neuroimage; 2000 Nov; 12(5):565-73. PubMed ID: 11034863
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Visual feedback about time estimation is related to a right hemisphere activation measured by PET.
    Brunia CH; de Jong BM; van den Berg-Lenssen MM; Paans AM
    Exp Brain Res; 2000 Feb; 130(3):328-37. PubMed ID: 10706432
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Cortical representation of inward and outward radial motion in man.
    Ptito M; Kupers R; Faubert J; Gjedde A
    Neuroimage; 2001 Dec; 14(6):1409-15. PubMed ID: 11707096
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Premotor cortex activation during observation and naming of familiar tools.
    Grafton ST; Fadiga L; Arbib MA; Rizzolatti G
    Neuroimage; 1997 Nov; 6(4):231-6. PubMed ID: 9417966
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Hand movement distribution in the motor cortex: the influence of a concurrent task and motor imagery.
    Rodríguez M; Muñiz R; González B; Sabaté M
    Neuroimage; 2004 Aug; 22(4):1480-91. PubMed ID: 15275905
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.